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Abstract
We complete our study of non-Abelian gauge theories in the framework of
the Epstein–Glaser approach to renormalization theory including in the model
an arbitrary number of Dirac fermions. We consider the consistency of the
model up to the third order of the perturbation theory. In the second order we
obtain pure group theoretical relations expressing a representation property of
the numerical coefficients appearing in the left- and right-handed components
of the interaction, Lagrangian. In the third order of the perturbation theory we
obtain the the condition of cancellation of the axial anomaly.

PACS numbers: 1110G, 1115, 1220

1. Introduction

In some preceding papers [16,17] we have extended results of Aste et al [3,4,13] concerning the
uniqueness of the non-Abelian gauge theory describing the consistent interaction of bosons of
spin 1. It appeared that the gauge invariance principle is a natural consequence of the description
of spin-one particles in a factor Hilbert space: gauge invariance expresses the possibility of
factorizing the S-matrix to the physical space, which is usually constructed using the existence
of a supercharge Q according to the cohomological-type formula Hphys = Ker(Q)/Im (Q).
The obstructions to such a factorization process are the well known anomalies. The case
when the spin-one bosons of non-null mass are admitted in the game was studied in [4, 13]
for the concrete case of the electro-weak interaction i.e. when the gauge group is exactly
SU(2)× U(1).

In [17] we analysed the same problem considering that the spin-one bosons can have
non-null masses; we did not impose any restriction on their number and masses and we did not
took into account the matter fields. Similar results were obtained in [24]. We have obtained,
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only from the condition of absence of the anomaly up to the second order, the existence of a
Lie algebra g and the existence of a representation of this Lie algebra pertaining to the Higgs
fields.

In this paper, we consider the effect of including Dirac fermions. In this way we are
able to investigate a truly realistic model of gauge interactions of elementary particles and, in
particular, to see what are the restrictions on such a model determined by the cancellation of
all anomalies. The main results are the following ones.

(A) The cancellation of the anomaly in the second order of the perturbation theory brings new
relations on the numerical coefficients of the left- and right-handed components of the
interaction Lagrangian. More precisely, new group theoretical properties appear:

(i) The coefficients of the vectorial and pseudo-vectorial couplings can be organized as
two representations of the gauge algebra, t+

a and t−a with a, b, . . . = 1, . . . , r group
indices; the usual notations are tRa and tLa .

(ii) The coefficients of the scalar and pseudo-scalar couplings can be organized as some
tensor operators.
Some of these relations have been obtained from different considerations in [6,22,26].

(iii) Some conditions on the couplings of the Higgs fields appear if one imposes the
additional requirement that no finite renormalizations of degree greater than 4 are
allowed. This condition gives the usual expression for the Higgs potential [4,13] for
the case of the standard model (SM).

(B) The cancellation of the anomaly in the third order of the perturbation theory gives,
essentially, the usual condition of cancellation of the axial anomaly:

Aabc ≡ Tr
(
t+
a {t+

b , t
+
c }

)− Tr
(
t−a {t−b , t−c }

)
. (1.0.1)

This is the expression of the Adler–Bardeen–Bell–Jackiw anomaly [1,2,5,7,20–22,25,27].
So, we obtain the usual condition of cancellation of the axial anomaly from the rigorous causal
approach to renormalization theory.

The structure of the paper is the following. In the next section we define the model and
construct the interaction Lagrangian including Dirac fermions. Then in section 3 we outline
the general setting for the study of the renormalization theory, the general structure of Ward
identities and some facts about distribution splitting. In section 4 we construct the S-matrix up
to the second order of the perturbation theory. For the case without matter fields we reobtain the
results of [17]. Then we consider the coupling of Yang–Mills fields with Dirac fermions and, as
anticipated above, we obtain the group-theoretical information explained above. The complete
analysis of these relation—we refer especially to (4.1.6)—is not available in the literature in
full generality, at least to our knowledge; this subject deserves further investigation. We also
analyse the conservation of the BRST current in the second order of the perturbation theory. In
section 5 we go to the third order of the perturbation theory. We investigate the Dirac fermionic
sector and we obtain the new conditions on the fermionic representations from above. Finally
we particularize the formalism for the case of the SM with one generation of Dirac particles.

For the sake of clarity of the rather long and intricate analysis we adopt the mathematical
definition–theorem style of presenting various assertions and computations.

2. General description of the vector Bosons

2.1. Massive Yang–Mills fields

In [16] and [17] we have started from the following two facts:
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(1) a system of free zero-mass vector bosons can be described in a Hilbert space generated
from the vacuum � by applying the free fields Aµ, u, ũ of zero mass and a factorization
procedure induced by a supercharge operator;

(2) a system of free vector bosons of massm > 0 can be described in a Hilbert space generated
from the vacuum � by applying the free fields Aµ, u, ũ, � of mass m and a factorization
procedure induced by a supercharge operator.

Here Aµ is a boson vector field, u and ũ are scalar Fermi fields and � is a scalar boson
field; the fields u, ũ,� are usually called ghost fields.

For the Yang–Mills model we somehow combine these two cases. We consider the
auxiliary Hilbert space Hgh,r

YM generated from the vacuum � by applying the free fields
Aaµ, ua, ũa, �a a = 1, . . . , r , where the first one has vector transformation properties
with respect to the Poincaré group and the others are scalars. In other words, every vector field
has three scalar partners. Also ua, ũa a = 1, . . . , r are fermion and Aµ, �a a = 1, . . . , r
are boson fields.

We have two distinct possibilities for distinct indices a:

(I) Fields of type I correspond to an index a such that the vector field Aµ
a has non-zero mass

ma . In this case we suppose that all the other scalar partner fields ua, ũa, �a have the
same mass ma .

(II) Fields of type II correspond to an index a such that the vector field A
µ
a has zero mass.

In this case we suppose that the scalar partner fields ua, ũa also have zero mass but the
scalar field �a can have a non-zero mass: mH

a � 0. It is convenient to use the compact
notation

m∗a ≡
{
ma for ma 	= 0
mH
a for ma = 0.

(2.1.1)

Then the following equations of motion describe the preceding construction:

(� + m2
a)ua(x) = 0 (� + m2

a)ũa(x) = 0
(� + (m∗a)

2)�a(x) = 0 a = 1, . . . , r.
(2.1.2)

We also postulate the following canonical (anti)commutation relations:

[Aaµ(x), Abν(y)] = −δabgµνDma
(x − y)× 1

{ua(x), ũb(y)} = δabDma
(x − y)× 1

[�a(x),�b(y)] = δabDm∗a (x − y)× 1

(2.1.3)

(all other (anti)commutators are null).
In this Hilbert space we suppose, given a sesquilinear form 〈·, ·〉 such that

Aaµ(x)
† = Aaµ(x) ua(x)

† = ua(x)

ũa(x)
† = −ũa(x) �a(x)

† = �a(x).
(2.1.4)

The ghost degree is ±1 for the fields ua, ũa , a = 1, . . . , r and 0 for the other fields.
One can define the BRST supercharge Q by

{Q,ua} = 0 {Q, ũa} = −i(∂µA
µ
a + ma�a)

[Q,Aµ
a ] = i∂µua [Q,�a] = imaua ∀a = 1, . . . , r

(2.1.5)

and

Q� = 0. (2.1.6)
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Then one can justify that the physical Hilbert space of the Yang–Mills system is a factor
space

Hr
YM ≡ H ≡ Ker(Q)/Ran(Q). (2.1.7)

The sesquilinear form 〈·, ·〉 induces a bona fide scalar product on the Hilbert factor space.
The factorization process leads to the following physical particle content of this model:

• For ma > 0 the fields Aµ
a , ua, ũa, �a describe a particle of mass ma > 0 and spin

1; these are the so-called heavy bosons [17].
• For ma = 0 the fields Aµ

a , ua, ũa describe a particle of mass 0 and helicity 1; the
typical example is the photon [16].
• For ma = 0 the fields �a describe a scalar fields of mass mH

a ; these are the so-called
Higgs fields.

This framework is sufficient for the study of the SM of the electro-weak interactions:
indeed one takes r = 4 and considers that there are three fields of type I and one field of
type II. The scalar field appearing in the last case can be considered as the Higgs field.
To also include quantum chromodynamics one must consider that there is a third case:

(III) Fields of type III correspond to an index a such that the vector field Aµ
a has zero mass and

the scalar partners ua, ũa also have zero mass but the scalar field �a is absent.

In [24] and [14] the model is constructed somewhat differently: one eliminates the fields of
type II and includes a number of supplementary scalar bosonic fields ϕi of masses mi � 0.
In this framework one can consider for instance the very interesting Higgs–Kibble model in
which there are no zero-mass particles, so the adiabatic limit probably exists.

One can preserve the general framework with only two types of index if we consider that
in case II there are in fact three subcases (i.e. three types of index a for which ma = 0):

(IIa) in this case Aaµ, ua, ũa, �a 	≡ 0;
(IIb) in this case �a ≡ 0;
(IIc) in this case Aaµ, ua, ũa ≡ 0.
One must modify appropriately the canonical (anti-) commutation relations (2.1.3) to

avoid contradiction for some values of the indices. One has some freedom of notation: for
instance, one can eliminate case (IIa) if one includes the first three fields in case (IIb) and the
last one in case (IIc). The relations (2.1.5) are not affected in this way.

Let us consider the set of Wick monomials W constructed from the free fields Aµ
a , ua, ũa

and �a for all indices a = 1, . . . , r; we define the BRST operator dQ : W → W as the
(graded) commutator with the supercharge operator Q. Then one can prove easily that

d2
Q = 0. (2.1.8)

The class of observables on the factor space is defined as follows: an operator O:
Hgh,r

YM → Hgh,r

YM induces a well defined operator [O] on the factor space Ker(Q)/Im (Q) � Fm

if and only if it verifies dQO|Ker(Q) = 0. Because of the relation (2.1.8) not all operators
verifying the condition (2.1) are interesting. In fact, the operators of the type dQO induce a
null operator on the factor space; explicitly, we have

[dQO] = 0. (2.1.9)

The canonical dimension ω(W) of a certain Wick monomial is defined according to the
usual prescription. By definition, a Wick polynomial is a sum of Wick monomials.

We will construct a perturbation theory á la Epstein–Glaser using this set of free fields and
imposing the usual axioms of causality, unitarity and relativistic invariance on the chronological
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products T (x1, . . . , xn). Moreover, we want the result to factorize to the physical Hilbert space
in the adiabatic limit. This amounts to

lim
ε↘0

dQ

∫
(R4)×n

dx1 · · · dxn gε(x1) · · · gε(xn)T (x1, . . . , xn)|Ker(Q) = 0 ∀n � 1. (2.1.10)

If this condition if fulfilled, then the chronological and the antichronological products do
factorize to the physical Hilbert space and they give a perturbation theory verifying causality,
unitarity and relativistic invariance.

One may raise at this point the rather serious objection that the adiabatic limit probably does
not exist. One way to ‘cure’ this problem is to replace the condition of factorization (2.1.10)
by the ‘infinitesimal’ version postulated in [3–13], namely

dQT (x1, . . . , xn) = i
n∑
l=1

∂

∂x
µ

l

T
µ

l (x1, . . . , xn) (2.1.11)

for some auxiliary chronological products T
µ

l (x1, . . . , xn), l = 1, . . . , n, which must be
determined recurringly, together with the standard chronological products, and to construct
the S-matrix S(g) for a test function g, that is without performing the adiabatic limit g ↘ 1.

However, this point of view is not without problems. Indeed, if one imposes (2.1.11)
instead of (2.1.10), then the S-matrix so constructed will not factorize to the physical space
Ker(Q)/Im (Q), which raises the question of its physical relevance. To this one must add
the rather unpleasant fact that one abandons the consistency condition (2.1.10), which has a
direct physical relevance: the possibility of constructing an S-matrix in the physical space
Ker(Q)/Im (Q)) for an independent postulate (2.1.11). On the other hand, the rather close
connection between (2.1.10) and (2.1.11) suggests that there must exist a common ‘cure’
for both types of problem. That is, if one can find a reasonable solution of the adiabatic
limit problem, then it is reasonable to conjecture that one will be able to strengthen the
mathematical status of (2.1.10) and, eventually, prove its equivalence with (2.1.11). In this
case the consistency condition can be also written in the following form:

dQ

∫
(R4)×n

dx1 · · · dxn gε(x1) · · · gε(xn)T (x1, . . . , xn)|Ker(Q) = O(ε) ∀n � 1 (2.1.12)

in the sense of the infinitesimal calculus of Dieudonné. In what follows, the interpretation
of the right-hand side of the preceding relations will be ‘an integrated divergence’. In other
words, to avoid various problems we will use in fact the formal adiabatic limit condition given
by (2.1.11). A more detailed discussion on this point can be found in [17].

By a trivial Lagrangian we mean a Wick expression of the type

L(x) = dQN(x) + i
∂

∂xµ
Lµ(x) (2.1.13)

with L(x) and Lµ(x) some Wick polynomials. The first term in the previous formula gives
zero by factorization to the physical Hilbert space (according to a previous discussion) and
the second one also gives zero in the adiabatic limit; this justifies the elimination of such an
expression from the first-order chronological product T (x).

If one completely exploits the condition of gauge invariance in the first order of perturbation
theory, obtaining the generic form of the Yang–Mills interaction of spin-one bosons up
to a trivial Lagrangian. We assume the summation convention of the dummy indices
a, b, . . . = 1, . . . , r . The result from [17] is:

Theorem 2.1. Let us consider the operator T (x) defined on Hgh,r

YM as a Lorentz-invariant Wick
polynomial in A

µ
a (x), ua(x), ũa(x), �a(x) such that every term has canonical dimension
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three or four. If it verifies the formal adiabatic limit condition then it has, up to a trivial
Lagrangian, the following form:

T YM(x) = fabc[: Aaµ(x)Abν(x)∂
νAµ

c (x) : − : Aµ
a (x)ub(x)∂µũc(x) :]

+f ′abc[: �a(x)∂µ�b(x)A
µ
c (x) : −mb : �a(x)Abµ(x)A

µ
c (x) :

+mb : �a(x)ũb(x)uc(x) :]

+f ′′abc : �a(x)�b(x)�c(x) : +gabcd : �a(x)�b(x)�c(x)�d(x) : . (2.1.14)

The various constants from the preceding expression are constrained by the following
conditions:

• the expressions fabc are completely antisymmetric

fabc = −fbac = −facb (2.1.15)

and verify

(ma −mb)fabc = 0 iff mc = 0 ∀a, b = 1, . . . , r (2.1.16)

• the expressions f ′abc are antisymmetric in the indices a and b:

f ′abc = −f ′bac (2.1.17)

and verify the relation

(mH
a −mH

b )f
′
abc = 0 iff ma = mb = mc = 0 ∀a, b = 1, . . . , r (2.1.18)

and are connected to fabc by

fabcmc = f ′cabma − f ′cbamb ∀a, b, c = 1, . . . , r (2.1.19)

• the expressions f ′′abc remain undetermined for ma = mb = mc = 0 and for the opposite
case are given by

f ′′abc =
1

6mc

f ′abc
[
(m∗a)

2 − (m∗b)
2 −m2

a + m2
b

]
(2.1.20)

for mc 	= 0;
• the expressions gabcd are non-zero only for ma = mb = mc = md = 0 and in this case

they are completely symmetric.

Remark 2.2. The presence of indices of type (IIb) and (IIc) is taken into account by requiring
that the constants from T (x) are null if one of the indices a, b, c takes such values. One can
see that this does not affect the equations from the statement of the theorem.

We also have:

Corollary 2.3. In the condition of the preceding theorem, one has

dQT (x) = i∂µT
µ(x) (2.1.21)

where

T µ = fabc(: uaAbνF
νµ
c : − 1

2 : uaub∂
µũc :) + f ′abc(ma : Aµ

a�buc : + : �a∂
µ�buc :). (2.1.22)

The expression T (x) from the preceding theorem verifies the unitarity condition

T (x)† = T (x)

if and only if the constants fabc, f ′abc and f ′′abc have real values; it also verifies the causality
condition

[T (x), T (y)] = 0 ∀x, y ∈ R
4 s.t. (x − y)2 < 0.

We close this subsection with some remarks.
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Remark 2.4. One can see that the necessity of using ghost fields stems from the fact that it
seems to be impossible to construct the interaction Lagrangian without them. However, from
a fundamental point of view, one can consider them only as some catalysts [14] and hope that
one will be able to reformulate the whole theory without them.

Remark 2.5. In the first-order analysis one can also use instead of the formal adiabatic limit
condition (2.1.11) the more physical condition (2.1.10) because no problems connected with
the adiabatic limit exist in this case. However, as noted in [13], the condition does essentially
eliminate the tri-linear terms and one loses much of the information of the preceding theorem.
This is another indication that one should work with the formal adiabatic limit condition.

Remark 2.6. In [8] one can find a discussion showing that trivial Lagrangians do not produce
effects in the higher orders of perturbation theory.

2.2. Yang–Mills fields coupled to matter

We study here the possibility of coupling Yang–Mills fields to ‘matter’. We suppose that we are
given the Hilbert space of ‘matter’ Hmatter, which is usually also a Fock space. Then the coupled
system is described in the tensor product Hilbert space FYM ⊗Hmatter. One can describe this
Fock space considering H̃gh,r

YM ≡ Hgh,r

YM ⊗Hmatter with the corresponding supercharge operator
and forming the quotient Ker(Q)/Im (Q). We will consider here that the ‘matter’ is formed
from Dirac fermions only.

First, we generalize theorem 2.1:

Theorem 2.7. Let us consider the operatorT (x) defined on H̃gh,r

YM , which is a Lorentz-invariant
Wick polynomial in A

µ
a (x), ua(x) , ũa(x) ,�a(x) and the matter fields such that every term

has canonical dimension three or four. Then T (x) verifies the formal adiabatic limit condition
if and only if, up to a trivial Lagrangian, it has the following form:

T (x) = T YM(x) + Aµ
a (x)jaµ(x) +

∑
ma 	=0

1

ma

�a(x)∂µj
µ
a (x) +

∑
ma=0

�a(x)ja(x) + Tmatter(x).

(2.2.1)

Here T YM(x) has been defined in theorem 2.1, jaµ and ja are Lorentz covariant currents built
only from the matter fields with ω(jaµ) = 1, 2, 3 and Tmatter(x) contains only the matter fields.
Moreover the following conservation law should be valid:

∂µj
µ
a (x) = 0 ∀ma = 0. (2.2.2)

The expression for T (x) verifies the unitarity requirement if and only if we have

jµa (x)
† = jµa (x) ∀a = 1, . . . , r ja(x)

† = ja(x) ∀ma = 0 (2.2.3)

and verifies the causality condition if and only if

[jµa (x), j
ν
b (y)] = 0 (x − y)2 < 0 ∀a, b = 1, . . . , r (2.2.4)

[ja(x), jb(y)] = 0 (x − y)2 < 0 ∀ma = mb = 0 (2.2.5)

[jµa (x), jb(x)] = 0 (x − y)2 < 0 ∀mb = 0. (2.2.6)

Proof. Beside the terms considered in theorem 2.1 we have to include terms containing
explicitly the Dirac fermions. Lorentz covariance and power counting limit these terms to
Tmatter(x) and

Tmatter(x) ≡ Aµ
a (x)jaµ(x) + �a(x)ja(x) (2.2.7)
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with jaµ (ja) a Lorentz covariant (invariant) operator. Proceeding in the same way as for the
proof of theorem 2.1, we obtain a supplementary restriction, namely

maja = ∂µj
µ
a ∀a = 1, . . . , r. (2.2.8)

In other words, for ma = 0 we obtain (2.2.2) and for ma 	= 0 we obtain

ja = 1

ma

∂µj
µ
a . (2.2.9)

The expression from the statement emerges. The other assertions are straightforward,
although rather tedious to verify. �

It is clear that if the Hilbert space of the matter fields is also a Fock space and the currents
are build from Wick monomials, then the commutation relations (2.2.6) are always verified.

Corollary 2.8. The following formula is true:

dQT (x) = i
∂

∂xµ
T µ(x) (2.2.10)

where T µ(x) is obtained by adding to the corresponding expression from the pure Yang–Mills
case—see (2.1.22)—the following contribution due to the presence of matter:

T
µ

matter(x) ≡ ua(x)j
µ
a (x). (2.2.11)

Now we obtain in detail the structure of the interaction Lagrangian in the following two
propositions. We have:

Proposition 2.9. Suppose that the Dirac fermions generating Hmatter are ψA of masses
MA � 0, A = 1, . . . , N . Then the generic forms of the currents from the preceding theorem
are

jµa (x) =: ψA(x)(ta)ABγ
µψB(x) : + : ψA(x)(t

′
a)ABγ

µγ5ψB(x) : (2.2.12)

and

ja(x) =: ψA(x)(sa)ABψB(x) : + : ψA(x)(s
′
a)ABγ5ψB(x) : . (2.2.13)

The causality conditions from theorem 2.7 are fulfilled and the hermiticity conditions are
equivalent to the fact that the complex N ×N matrices ta , t ′a , sa , a = 1, . . . , r are Hermitian
and s ′a , a = 1, . . . , r anti-Hermitian.

The contributions with (without) the matrix γ5 is called axial (vectorial) current. Let us
define the mass matrix by

MAB ≡ δA,BMA ∀A,B = 1, . . . , N. (2.2.14)

Then we have:

Proposition 2.10. The following mass relations are true:

sa = i

ma

[M, ta] s ′a =
i

ma

{M, t ′a} ∀ma 	= 0 (2.2.15)

[M, ta] = 0 {M, t ′a} = 0 ∀ma = 0. (2.2.16)

In particular, the matrices ta , ∀ma = 0, can be exhibited in a block diagonal structure
(eventually after a relabelling of the Dirac fields) and the masses corresponding to the same
block must be equal.

Proof. It is easy to show that the conservation law (2.2.8) is equivalent to the two relations
from the statement. �
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Corollary 2.11. Let us define

t εa ≡ ta + εt ′a sεa ≡ sa + εs ′a ∀a = 1, . . . , r (2.2.17)

where ε = ±. Then, the relations (2.2.15) and (2.2.16) are equivalent to

sεa =
i

ma

(Mtεa − t−εa M) ∀ma 	= 0 (2.2.18)

Mtεa = t−εa M ∀ma = 0 (2.2.19)

and the hermiticity conditions are equivalent to

(tεa )
∗ = t εa (sεa)

∗ = s−εa ∀a = 1, . . . , r ε = ±. (2.2.20)

3. Perturbation theory

3.1. The general framework

We give here the basic ideas of a multi-Lagrangian perturbation theory following [15] and [18].
One can argue that the S-matrix is a formal series of operator valued distributions:

S(g) = 1 +
∞∑
n=1

in

n!

∫
R4n

dx1 · · · dxn Tj1,...,jn (x1, . . . , xn)gj1(x1) · · · gjn(xn) (3.1.1)

where g = (
gj (x)

)
j=1,...,P is a multi-valued tempered test function in the Minkowski space R

4

that switches the interaction and Tj1,...,jn (x1, . . . , xn) are operator-valued distributions acting
in the Fock space of some collection of free fields with a common dense domain of definition
D0. These operator-valued distributions are called chronological products and verify some
properties called Bogoliubov axioms. We note that there is a canonical association of the point
xi and the index ji . One starts from a set of interaction Lagrangians Tj (x), j = 1, . . . , P and
tries to construct the whole series Tj1,...,jn , n � 2.

We outline briefly the set of axioms imposed on the chronological products Tj1,...,jn ; we do
not give the explicit formulæ because they are well known in the literature and can be found
in the references quoted above.

• Symmetry. This axiom describes the behaviour of the chronological products with respect
to the permutation of the couples (xi, ji).
• Poincaré invariance. This axiom describes the behaviour of the chronological products

with respect to the action of the Poincaré group in the Fock space of the system. Essentially
it is a tensorial covariance condition.
• Causality. This describes factorization properties of the chronological products for

causally separated arguments. This seems to be the central axiom of this axiomatic
approach; it plays a major rôle in other axiomatic schemes as well.
• Unitarity. This axiom is considered in the sense of formal series.

A renormalization theory is the possibility to construct such an S-matrix starting from
the first-order terms: Tj (x), j = 1, . . . , P , which are linearly independent Wick polynomials
called interaction Lagrangians, which should verify the corresponding axioms expressing the
behaviour with respect to Poincaré transformations, Hermitian conjugation and commutation
properties for spacelike separated arguments.

The case of a single Lagrangian corresponds to a single coupling constant, that isP = 1 and
in that case the chronological products will be operators T (X) without any indices. However,
it is more convenient to consider that the interaction Lagrangian is given by the sum

T (x) =
∑

cjTj (x) (3.1.2)
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with cj some real constants. In this case, the chronological products of the theory are

T (X) =
∑

cj1 . . . cjnTj1,...,jn (X). (3.1.3)

It can be shown that that one must consider the given interaction Lagrangians Tj (x) to
be all Wick monomials of canonical dimension ωj � 4 (j = 1, . . . , P ) acting in the Fock
space of the system. Because the Fock space is generated by some free relativistic fields acting
on the vacuum � it is easy to see that there are always covariance properties with respect to
Poincaré transformations.

If there are non-Hermitian free fields acting in the Fock space, we have in general

Tj (x)
† = Tj∗(x) (3.1.4)

where j → j ∗ is a bijective map of the numbers 1, 2, . . . , P .
If there are Fermi or ghost fields acting in the Fock space, the causality property is in

general

Tj1(x1)Tj2(x2) = (−1)σj1σj2Tj2(x2)Tj1(x1) ∀x1 ∼ x2. (3.1.5)

Here σi is the number of Fermi and ghost field factors in the Wick monomial Tj ; if σj is
even (odd) we call the index j even (odd). One has to keep track of these signs in the symmetry
axiom for the chronological products.

It is convenient to also let the index j have the value zero and we put by definition

T0 ≡ 1. (3.1.6)

Moreover, we define a new sum operation of two indices j1, j2 = 1, . . . , P ; this
summation is denoted by + but should not be confused with the ordinary sum. By definition
we have

Tj1+j2(x) = c : Tj1(x)Tj2(x) : (3.1.7)

for some positive constant c. We define componentwise the summation for n-tuples J =
{j1, . . . , jn}. The new summation is non-commutative if Fermi or ghost fields are present.

We will use the notation

ωJ ≡
∑
j∈J

ωj (3.1.8)

and we call it the canonical dimension of TJ (X).
Let us denote by ω(d) the order of singularity of the numerical distribution d. We use

the definition from [23] although one can also use the scaling degree introduced by Steinmann
(see [10]).

Then we add a new axiom, namely the following Wick expansion property of the
chronological products is valid:

TJ (X) =
∑

K+L=J
εtK(X)WL(X) (3.1.9)

where (a) tK(X) are numerical distributions (the renormalized Feynman amplitudes), (b) the
degree of singularity is restricted by the relation

ω(tK) � ωK − 4(n− 1) (3.1.10)

(c) ε is the sign originating from permutation of Fermi fields and (d) we have introduced the
notation

WJ (X) ≡: Tj1(x1) · · · Tjn(xn) : . (3.1.11)

Let us notice that from (3.1.9) we have

tJ (X) = 〈�, TJ (X)�〉. (3.1.12)
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In particular, these numerical distributions are Poincaré covariant; translation invariance
implies that they are in fact distributions in m = 4(|X| − 1) variables.

The recursive construction assumes that we have the expressions TJ (X) for |X| � n− 1
verifying all the properties and tries to construct them for X = n. The basic object is the
commutator function:

Dj1,...,jn (x1, . . . , xn−1; xn) ≡ A′j1,...,jn
(x1, . . . , xn−1; xn)− R′j1,...,jn

(x1, . . . , xn−1; xn)
(3.1.13)

where

A′j1,...,jn
(x1, . . . , xn−1; xn) ≡

∑′
X1,X2∈Part(X)

(−1)|X2|TJ1(X1)T̄J2(X2) (3.1.14)

and

R′j1,...,jn
(x1, . . . , xn−1; xn) ≡

∑′
X1,X2∈Part(X)

(−1)|X2|T̄J2(X2)TJ1(X1) (3.1.15)

and the sums
∑′ run over the partitions verifying X2 	= ∅, xn ∈ X1.

The commutator function can be proved to be Poincaré covariant and to have causal support
i.e. supp(Dj1,...,jn (x1, . . . , xn−1; xn)) ⊂ 9+(xn) ∪ 9−(xn) where we use standard notations:

9±(xn) ≡ {(x1, . . . , xn) ∈ (R4)n|xi − xn ∈ V ± ∀i = 1, . . . , n− 1}. (3.1.16)

Moreover, a formula similar to (3.1.9) is true:

DJ (X) =
∑

K+L=J
εdK(X)WL(X) (3.1.17)

where dK(X) are numerical distributions; in analogy to (3.1.12) we have

dJ (X) = 〈�,DJ (X)�〉. (3.1.18)

It follows that the numerical distributions dJ (X) have causal support i.e. supp(dJ (X)) ⊂
9+(xn)∪9−(xn) and are SL(2,C)-invariant. Moreover, their degree of singularity is restricted
by

ω(dK) � ωK − 4(n− 1) (3.1.19)

(this is the content of the power counting theorem). One knows that there exists a causal
splitting

dJ = aJ − rJ supp(aJ ) ⊂ 9+(xn) supp(rJ ) ⊂ 9−(xn) (3.1.20)

which is also SL(2,C)-invariant and such that the order of the singularity is preserved. So,
there exists a SL(2,C)-covariant causal splitting:

DJ (X) = AJ (X)− RJ (X) |X| = n (3.1.21)

with supp(Aj1,...,jn (x1, . . . , xn−1; xn)) ⊂ 9+(xn) and supp(Rj1,...,jn (x1, . . . , xn−1; xn)) ⊂
9−(xn).

Let us define

TJ (X) ≡ AJ (X)− A′J (X) = RJ (X)− R′J (X). (3.1.22)

Then these expressions satisfy the SL(2,C)-covariance, and causality axioms. One can also
fix unitarity and symmetry.

We end this subsection with an important remark. Let us consider some general Wick
polynomials

Ai(x) =
∑
j

cij Tj (x) i = 1, 2, . . . . (3.1.23)

Then we can define the chronological products

T (A1(x1), . . . , An(xn)) ≡
∑
J

ci1j1 · · · cinjnTj1,...,jn (x1, . . . , xn). (3.1.24)

One can find in [10] a system of axioms for the expressions T (A1(x1), . . . , An(xn))which
is equivalent to the Bogoliubov set of axioms.
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3.2. Ward identities

As we said in section 2.1 the problem is to construct the whole series T (X) such that one has
the gauge invariance condition in all orders of the perturbation theory at the same time as the
other Bogoliubov axioms.

In general we have something more general than relation (3.1.2)

T (x) =
∑

cjTj (x) T µ(x) =
∑

c
µ

j Tj (x) (3.2.1)

with cj and cµj some real constants; then we will have something more general than (3.1.3):

T (X) =
∑

cj1 · · · cjnTj1,...,jn (X) T
µ

l (X) =
∑

cj1 . . . c
µ

jl
. . . cjnTj1,...,jn (X). (3.2.2)

In particular, the following conventions hold:

T (∅) ≡ 1 T
µ

l (∅) ≡ 0 T
µ

l (X) ≡ 0 for xl 	∈ X. (3.2.3)

Then the gauge invariance condition (2.1.11) can be written more compactly as follows:

dQT (X) = i
∑ ∂

∂x
µ

l

T
µ

l (X). (3.2.4)

We suppose that these relations are true up to order |X| � n−1 and investigate the possible
obstructions in order n. The procedure used in [11,12] and [16,17] amounts to the following.
Let us define the operator distributions D(X) and D

µ

l (X) in analogy to the relations (3.2.2).
Then it can be proved that we have

dQD(X) = i
n∑
l=1

∂

∂x
µ

l

D
µ

l (X) |X| = n. (3.2.5)

We can express this condition in terms of numerical distributions. According to the
relation (3.1.9) and the Wick theorem we must have Wick expansions for the two expressions
appearing in the preceding equation:

D(X) =
∑
J

dJ (X)WJ (X) D
µ

l (X) =
∑
J

d
µ

l;J (X)WJ (X). (3.2.6)

The numerical distributions appearing in these relations have the following properties:
they are Poincaré covariant, they have causal support and the order of singularity can be
restricted according to the power counting formula:

ω(dJ ) + ωJ � 4 ω(d
µ

l;J ) + ωJ � 4 (3.2.7)

according to the power counting theorem.
One can rewrite (3.2.6) as follows:

D(X) =
∑
i

di(X)Wi (X) D
µ

l (X) =
∑
i

di(X)W
µ

l;i (X) +
∑
i

d
µ

i (X)Wl;i (X) (3.2.8)

where di and dµi can be taken to be linear independent over the vector space of smooth functions
with polynomial bounded increase at infinity OM . The index i takes a finite number of values
and the expressions Wi(X), Wl;i (X), W

µ

l;i (X) are Wick polynomials.
Using the linear independence one obtains from (3.2.5) a set of identities among Wick

polynomials of the type

dQWi = · · · (3.2.9)

where the left-hand side can be computed as follows. First one makes the derivation operations
in the right-hand side of (3.2.5). It is quite possible that relations of the type

∂

∂x
µ

l

d
µ

l;i (X) =
∑
j

cj dj (X) (3.2.10)
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are valid for some numbers cj . Then one has to rearrange the expression in the right-hand side
of (3.2.5) and the right-hand side of (3.2.9) emerges as the coefficient of di(X).

Identities of the type (3.2.10) are called Ward–Takahashi (or Slavnov–Taylor identities).
In [12] these relations are called the C-g identities. They have been extensively studied in [9].
In lower orders of perturbation theory one can check them by explicit computation.

One now can interpret the renormalization theory as a distribution-splitting preservation
of the Ward identities. Suppose that one can find a causal splitting di = dadv

i −d ret
i of the set of

causal distributions di(X) such that we preserve Poincaré covariance, the order of singularity
and the identities (3.2.10); i.e., we also have

∂

∂x
µ

l

(d
µ

l;i )
adv(ret)(X) =

∑
j

cj d
adv(ret)
j (X). (3.2.11)

Then we define the expressions A(X) and Aµ

l (X) by making into the formulæ (3.2.8) the
substitutions d → dadv. If we use now the relations (3.2.9) we easily obtain

dQA(X) = i
n∑
l=1

∂

∂x
µ

l

A
µ

l (X) |X| = n. (3.2.12)

The similar property for the chronological products of order n easily follows. So, the
obstructions to the gauge invariance in order n can appear in the process of causally splitting
the relations (3.2.10) i.e. we might have instead of (3.2.11)

∂

∂x
µ

l

(d
µ

l;i )
adv(ret)(X)−

∑
j

cj d
adv(ret)
j (X) = p(X) (3.2.13)

where the expression in the right-hand side p(X)—called the anomaly—must have the form

p(X) = p(∂)δ(X) (3.2.14)

where p(∂) is a Lorentz covariant polynomial in the partial derivative operators and

δ(X) ≡ δ(x1 − xn) · · · δ(xn−1 − xn). (3.2.15)

Also, if the distribution appearing in (3.2.10) has some global symmetry property
(symmetry with respect to some global group of symmetries, (anti-) symmetry with respect to
some indices etc) one can usually perform the distribution splitting such that these properties
are also preserved. Moreover, we have a limitation on the degree of the polynomial p(∂):

deg(p) � ω (3.2.16)

where ω is the order of singularity of the left-hand side of (3.2.13). There easily follows a
case where there are no anomalies, namely when ω(d

µ

i ) � −2, ∀µ. Let us note in closing
this section that the form of a anomaly can be simplified by redefinitions of the distributions
ai and aµl;i ; we have the freedom of adding expressions of the type p(∂)δ(X).

4. Second-order perturbation theory

4.1. Yang–Mills coupled to matter

We follow [17], where the pure Yang–Mills case was studied, emphasizing the possible
appearance of anomalies in a more explicit way.
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Theorem 4.1. Suppose that the distribution T (x, y) verifies (3.1.10). Then it verifies the
formal adiabatic limit condition if and only if the following identities are verified:

fabcfdec + fbdcfaec + fdacfbec = 0 a, b, d, e = 1, . . . , r (4.1.1)

f ′dcaf
′
ceb − f ′dcbf

′
cea = −fabcf ′dec a, b, d, e = 1, . . . , r (4.1.2)

f ′cabf
′′
cde + f ′cdbf

′′
cae + f ′cebf

′′
cda = 0 iff mb = 0 (4.1.3)

Sbcdef f
′
cbagcdef = 0 a, b, d, e, f = 1, . . . , r (4.1.4)

[t εa , t
ε
b ] = ifabct

ε
c ε = ± a, b = 1, . . . , r (4.1.5)

t−a s
+
b − s+

b t
+
a = if ′bcas

+
c a, b = 1, . . . , r. (4.1.6)

Here S... is the symmetrization operator in the indices which are explicitly exhibited.

Proof. (i) According to the ideas from section 3.2, we compute the commutator

D(x1, x2) ≡ [T (x1), T (x2)] (4.1.7)

using the Wick theorem and identify a set of linearly independent distributions di as in (3.2.8);
these are distributions in one variable ξ ≡ x1 − x2 due to translation invariance. Direct
inspection of the expressions (2.1.14) and (2.2.1) produces a list of such distributions > with
causal support. Using Feynman graph terminology we have distributions associated with tree
and one-, two- and three-loop graphs. All these distributions can be written as sum of the
positive (negative) frequency parts:

> = >(+) + >(−). (4.1.8)

(a) From tree graphs:

Dm ∂ρDm ∂ρ∂σDm

SM(x) ≡ (iγ · ∂ + M)DM(x)
(4.1.9)

where Dm is the Pauli–Villars commutator distribution of causal support corresponding to
mass m (see [17] for the definition) and SM is the similar distribution for a Dirac field of mass
M .

(b) From one-loop graphs we obtain new distributions with causal support:

D(±)
m1,m2

≡ ±D(±)
m1

(x)D(±)
m2

(x)

D
(±)
m1,m2;ρ ≡ ±D(±)

m1
∂ρD

(±)
m2
− (1↔ 2)

∂ρDm1,m2

D
(±)
m1,m2;ρσ ≡ ±

[
∂ρD

(±)
m1

∂σD
(±)
m2
−D(±)

m1
∂ρ∂σD

(±)
m2

]
+ (1↔ 2)

P
(±)
M1,M2

(x) ≡ ±Tr
[
S
(−)
M1

(∓x)S(+)M2
(±x)]

P
(±)
M1,M2;ρ(x) ≡ ±Tr

[
S
(−)
M1

(∓x)γρS(+)M2
(±x)]

P
(±)
M1,M2,ρσ

(x) ≡ ±Tr
[
γρS

(−)
M1

(∓x)γσS(+)M2
(±x)]

@
(±)
m,M ≡ ±D(±)

m S
(±)
M .

(4.1.10)

We note that in the definition of D(±)
m1,m2;ρ we have taken the antisymmetric part in the

masses because the symmetric part has been considered separately: it is the third distribution
from the list.

(c) From two-loop graphs:

D(±)
m1,m2,m3

≡ D(±)
m1

D(±)
m2

D(±)
m3

∂2Dm1,m2,m3

D
(±)
m1,m2;m3

≡ ∂µD
(±)
m1

∂µD(±)
m2

D(±)
m3

P
(±)
m;M1,M2

≡ ±D(±)
m P

(±)
M1,M2

P
(±)
m;M1,M2;ρσ ≡ ±D(±)

m P
(±)
M1,M2;ρσ .

(4.1.11)



Standard model and generalizations II 5443

(d) From three-loop graphs:

D(±)
m1,m2,m3,m4

(x) ≡ ±D(±)
m1

D(±)
m2

D(±)
m3

D(±)
m4

. (4.1.12)

The distributions P ...
... are obtained from contractions of two vectorial currents. Let us note

that one also obtains distributions of the typeQ...
... from contractions of two axial currents. These

distributions can be obtained directly from the corresponding distributionsP ...
... by conveniently

inserting two γ5 factors. However, the distributions of the type Q...
... can be expressed in terms

of P ...
... if one uses the identity

γ5S
(±)
M γ5 = −S(±)−M. (4.1.13)

The distributions following from contractions of an axial and a vectorial current are null
because the traces so obtained are null. Next, we note that in the other commutators

D
µ

1 (x1, x2) ≡ [T µ(x1), T (x2)] D
µ

2 (x1, x2) ≡ [T (x1), T
µ(x2)] = −Dµ

1 (x2, x1) (4.1.14)

the distributions gµλdλl;i from (3.2.8) can be of the following type

∂µDm γµSM Dm1,m2;µ Dm1,m2;µν PM1,M2;µ PM1,M2;µν (4.1.15)

and the distributions of the type di can be of the type

Dm ∂ρDm Dm1,m2 Dm1m2;ρ. (4.1.16)

Here the various parameters m,M, . . . are the masses appearing in the theory. If we
consider distinct combinations of masses and indices we obtain a linear independent set of
distributions.

Let us also give for further use the orders of singularity of the distributions listed above.
We have

ω(Dm) = −2 ω(Dm1,m2) = 0 ω(Dm1,m2;ρ) = −1

ω(Dm1,m2;ρσ ) = 2 ω(PM1,M2) = 2

ω(PM1,M2;ρ) = 1 ω(PM1,M2;ρσ ) = 2

ω(Pm;M1,M2) = 4 ω(Pm;M1,M2;ρσ ) = 4

ω(@m,M) = 1 ω(Dm1,m2,m3) = 2

ω(Dm1,m2;m3) = 4 ω(Dm1,m2,m3,m4) = 4.

(4.1.17)

Some of these orders of singularity are in fact lower than naive power counting suggests.
All these distributions have causal support so we have causal decompositions

> = >adv −>ret. (4.1.18)

We have assumed that the causal splitting is preserving Lorentz covariance and the order
of singularity. If the order of singularity is less 0 then this causal decomposition is unique (see
the end of the preceding section). This is the case for the distributions Dm, SM and Dm1m2;ρ .

(ii) Now we consider the Ward identities (3.2.10). By direct inspection one finds out that
they are

(∂2 + m2)Dm = 0 (4.1.19)

(iγ · ∂ −M)SM = SM(iγ ·
←
∂ −M) = 0 (4.1.20)

∂µDm1,m2;µ = (m2
2 −m2

1)Dm1,m2 (4.1.21)

∂µDm1,m2;µν = (m2
2 −m2

1)Dm1,m2;ν (4.1.22)

∂µPM1,M2;µ = i(M1 −M2)PM1,M2 (4.1.23)

∂µPM1,M2;µν = i(M1 −M2)PM1,M2;ν . (4.1.24)
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Now we analyse possible anomalies resulting after the causal splitting procedure. It is
well known that the first two relations (4.1.19) and (4.1.20) indeed produce anomalies: for the
(unique) causal splitting considered above one obtains

(∂2 + m2)Dadv(ret)
m = δ (4.1.25)

(iγ · ∂ −M)S
adv(ret)
M = S

adv(ret)
M (iγ · ←∂ −M) = −δ. (4.1.26)

One can prove more than that: even if we modify these splitting with arbitrary local
polynomial terms the anomalies do not disappear.

Next we consider (4.1.22); inspecting the orders we can have the following generic form
of the anomaly:

pν(∂) = c1∂ν + c3∂ν∂
2. (4.1.27)

We can eliminate this anomaly if we make the redefinition

Dadv
m1,m2;µν → Dadv

m1,m2;µν + (c1gµν + c3∂µ∂ν)δ. (4.1.28)

The case (4.1.24) can be treated in a similar way and the anomaly is also eliminated.
The Ward identity (4.1.21) is non-trivial only for m1 	= m2. We have already noticed that
there exists a unique causal decomposition preserving Lorentz covariance and the order of
singularity of Dm1,m2;µ; then we can define

Dadv
m1,m2

= 1

m2
2 −m2

1

∂µDadv
m1,m2;µ (4.1.29)

and the relation (4.1.21) is preserved; moreover the order of singularity is preserved:
ω(Dadv

m1,m2
) = ω(Dadv

m1,m2;ρ) + 1 = 0.
The Ward identity (4.1.23) is non-trivial only for M1 	= M2 and it has the generic form

p(∂) = c0 + c2∂
2. (4.1.30)

If we make the redefinitions

P adv
M1,M2;µ→ P adv

M1,M2;µ + c2∂µδ P adv
M1,M2

→ P adv
M1,M2

+ i
c0

M1 −M2
δ (4.1.31)

the anomaly is eliminated.
It is interesting to summarize the preceding argument by saying that the anomalies are

produced only by the distributions associated with tree graphs.
(iii) It follows that we can describe the structure of the terms from D

µ

l (x1, x2) which can
produce anomalies. It is sufficient to consider l = 1 and notice that the other part doubles the
value of the anomaly (because of obvious symmetry properties). We have

D
µ

1 (x1, x2) = ∂

∂x1µ
Dmc

(x1 − x2)Tc(x1, x2) +
∂2

∂x1µ∂x
ρ

1

Dmc
(x1 − x2)T

ρ
c (x1, x2)

+
∂

∂x1µ
Dm∗c (x1 − x2)T

′
c (x1, x2) +

∂2

∂x1µ∂x
ρ

1

Dm∗c (x1 − x2)T
′ρ
c (x1, x2)

+
8∑

α=1

: U(α)
A (x1)γ

µSA(x1 − x2)V
(α)
A (x2)

+
8∑

α=1

: T (α)
A (x1)SA(x1 − x2)γ

µW
(α)
A (x2) : + · · · (4.1.32)



Standard model and generalizations II 5445

where by · · · we mean the contributions which do not produce anomalies because of the
argument of (ii). We have the following explicit expressions:

Tc(x1, x2) = T YM
c (x1, x2) + fabc : ua(x1)A

ρ

b (x1)jcρ(x2) :
T ′c (x1, x2) = T ′YMc (x1, x2)− f ′cab : �a(x1)ub(x1)jc(x2) :
T ρ
c (x1, x2) = T YM,ρ

c (x1, x2) T ′ρc (x1, x2) = T ′YM,ρ
c (x1, x2)

(4.1.33)

where the expressions T YM
c (x1, x2), T ′YMc (x1, x2) and T

YM,ρ
c (x1, x2), T

′YM,ρ
c (x1, x2)

correspond to the pure Yang–Mills case and can be found in [17]. Also

U
(1)
A (x) = U

(3)
A (x) = U

(5)
A (x) = U

(7)
A (x) ≡ (ta)BAua(x)ψB(x)

U
(2)
A (x) = U

(4)
A (x) = U

(6)
A (x) = U

(8)
A (x) ≡ −(t ′a)BAua(x)ψB(x)γ5

V
(1)
A (x) = V

(4)
A (x) ≡ (tb)ADγρψD(x)A

ρ

b (x)

V
(2)
A (x) = V

(3)
A (x) ≡ −(t ′b)ADγργ5ψD(y)A

ρ

b (x)

V
(5)
A (x) = V

(8)
A (x) ≡ (sb)ADψD(x)�b(x)

V
(6)
A (x) = V

(7)
A (x) ≡ (s ′b)ADγ5ψD(x)�b(x)

(4.1.34)

and

W
(1)
A (x) = W

(3)
A (x) = W

(5)
A (x) = W

(7)
A (x) ≡ (ta)ABua(x)ψB(x)

W
(2)
A (x) = W

(4)
A (x) = W

(6)
A (x) = W

(8)
A (x) ≡ (t ′a)BAua(x)γ5ψB(x)

T
(1)
A (x) = T

(4)
A (x) ≡ −(tb)CAψC(x)γρA

ρ

b (x)

T
(2)
A (x) = T

(3)
A (x) ≡ −(t ′b)CAψC(x)γργ5A

ρ

b(x)

T
(5)
A (x) = T

(8)
A (x) ≡ −(sb)CAψC(x)�b(x)

T
(6)
A (x) = T

(7)
A (x) ≡ −(s ′b)CAψC(x)γ5�b(x).

(4.1.35)

The expression of the anomaly can be obtained in the generic form

A(x1, x2) = iδ(x1 − x2)A(x1) (4.1.36)

where

A(x1) ≡
∑
c

[
Tc(x1, x1) + T ′c (x1, x1)−

(
∂

∂x
ρ

1

T ρ
c

)
(x1, x1)−

(
∂

∂x
ρ

1

T ′ρc

)
(x1, x1)

]

+i
∑
α

[: U(α)
A (x1)V

(α)
A (x1) : + : T (α)

A (x1)W
(α)
A (x1) :]. (4.1.37)

So, the expression of the anomaly A(x) obtains an extra term because of the presence of
the Dirac fermions:

A(x) = AYM(x) + i : ua(x)A
ρ

b (x)ψA(x)γρ([ta, tb] + [t ′a, t
′
b]− ifabctc)ABψB(x) :

+i : ua(x)A
ρ

b (x)ψA(x)γργ5([ta, t
′
b] + [t ′a, tb]− ifabct

′
c)ABψB(x) :

+i : ua(x)�b(x)ψA(x)([ta, sb]− {t ′a, s ′b} + if ′cbasc)ABψB(x) :

+i : ua(x)�b(x)ψA(x)γ5([ta, s
′
b]− {t ′a, sb} + if ′cbas

′
c)ABψB(x) : . (4.1.38)

(iv) We proceed now as in [17]. First we equate the expression A(x) to a coboundary
dQL(x).

We obtain all the relations from [17] (and this explains the first four relations from the
statement). Moreover we obtain for all a, b = 1, . . . , r

[ta, tb] + [t ′a, t
′
b] = ifabctc [ta, t

′
b] + [t ′a, tb] = ifabct

′
c

[ta, sb]− {t ′a, s ′b} = −if ′cbasc [ta, s
′
b]− {t ′a, sb} = −if ′cbas

′
c

(4.1.39)
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which are equivalent to the last two relations from the statement.
(v) From the preceding computations we can obtain the explicit expression for the

coboundary L(x): it coincides with the expression obtained for the pure Yang–Mills case:

L(x) = LYM(x) ≡ 1
4fcabfcde : Aaν(x)Abν(x)A

µ

d (x)A
ν
e(x) :

−f ′cdaf ′ceb : Aaν(x)A
ν
b(x)�d(x)�e(x) :

−
∑
mb 	=0

g′abcd : �a(x)�b(x)�d(x)�e(x) : (4.1.40)

where

g′abcd ≡
1

2mb

Sabdef
′
cabf

′′
cde. (4.1.41)

Let us also define

Lµ(x) ≡
∑
c

[
T µ
c (x, x) + T ′µc (x, x)

]
. (4.1.42)

Again it coincides with the expression from the pure Yang–Mills case:

Lµ(x) = LYM,µ(x) = −fcabfcde : ua(x)Abν(x)A
ν
d(x)A

µ
e (x) :

−f ′cabf ′cde : �a(x)ub(x)�d(x)A
µ
e (x) : . (4.1.43)

We consider now a canonical causal splitting Ac(x1, x2) and A
c,µ

l (x1, x2) given by
the expressions which are obtained from the corresponding commutators if we make the
substitutions > → >adv. This indeed gives a causal splitting of D(x1, x2) and D

µ

l (x1, x2)

respectively. However the identity (3.2.12) is not fulfilled. If we define now the new causal
splitting

A(x1, x2) ≡ Ac(x1, x2) + δ(x1 − x2)L(x1)

A
µ

l (x1, x2) ≡ A
c,µ

l (x1, x2) + δ(x1 − x2)L
µ(x1)

(4.1.44)

then one can see that (3.2.12) becomes true. Moreover, in this way one can obtain in the
usual way the expression of the chronological products T (x1, x2) and T µ

l (x1, x2) such that we
have (3.2.4) and all other properties, in particular symmetry. �

Remark 4.2. If we do not require that (3.1.10) is fulfilled, the relations (4.1.4) and (4.1.6)
acquire a weaker form.

The group-theoretical information contained in this theorem is:

(a) The expressions fabc are the structure constants of a Lie algebra g.
(b) The structure constants fabc corresponding to ma = mb = mc = 0 generate a Lie

subalgebra g0 ⊂ g.
(c) The r × r (antisymmetric) matrices Ta , a = 1, . . . , r defined according to

(Ta)bc ≡ −f ′bca ∀a, b, c = 1, . . . , r (4.1.45)

are an r-dimensional representation of the Lie algebra g.
The representation Ta exhibited in the statement of the theorem is nothing else but the
representation of the gauge algebra g in which the Higgs fields live.

(d) The relation (4.1.5) tells us that the matrices t εa are representations of the Lie algebra g
and relation (4.1.6) shows that the matrices sεa are some tensor operators with respect to
the couple of representations t εb of the Lie algebra g.
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So, we propose the following strategy of analysing the generalization of the SM described
in this paper: first one should find restrictions on the Lie algebra g from the relation (4.1.2), then
one takes a couple of representations t εa of this Lie algebra and afterwards one determines the
matrices s+

a from the relation (4.1.6) using ideas from the proof of the Wigner–Eckart theorem.
We mention that if one tries to substitute the formula (2.2.18) into the formula (4.1.6), as done
in [3], then we end up with some very complicated trilinear relations, which are extremely
difficult to analyse in the general case.

Next, we have a generalization of proposition 3.9 from [17]. By definition the Feynman
propagator and the Feynman antipropagator are

>F ≡ >adv −>(−) = >ret + >(+) >AF ≡ >(+) −>adv = −>ret −>(−). (4.1.46)

Then we have:

Proposition 4.3. Suppose that that there is no contribution T1,matter in the first-order
chronological product. Then, we have

T c(x, y) = T YM,c(x, y)

−fabcDF
mc
(x − y)[: Aaν(x)F

νρ

b (x)jcρ(y) :

− : ua(x)∂ρũb(x)j
ρ
c (y) : +(x ↔ y)]

−fabc ∂

∂xµ
DF

mc
(x − y)[: Aρ

a(x)A
µ

b (x)jcρ(y) : −(x ↔ y)]

−f ′abcDF
mc
(x − y)[: �a(x)∂µ�b(x)j

µ
c (y) : −(x ↔ y)]

−f ′abcDF
m∗c
(x − y)[: ∂µ�a(x)A

µ

b (x)jc(y) : +(x ↔ y)]

−f ′abc
∂

∂xµ
DF

m∗c
(x − y)[: �a(x)A

µ

b (x)jc(y) : −(x ↔ y)]

−2h(1)abcD
F
mc
(x − y)[: �a(x)A

µ

b (x)jcµ(y) : +(x ↔ y)]

+h(1)cabD
F
m∗c
(x − y)[: Aaµ(x)A

µ

b (x)jc(y) : +(x ↔ y)]

+h(2)cabD
F
m∗c
(x − y)[: ũa(x)ub(x)jc(y) : +(x ↔ y)]

+3h(3)abcD
F
m∗c
(x − y)[: �a(x)�b(x)jc(y) : +(x ↔ y)]

+4gabcdD
F
m∗c
(x − y)[: �a(x)�b(x)�c(x)jc(y) : +(x ↔ y)]

+ : Aµ
a (x)A

ρ

b (y) : {[(ta)AC(tb)CB : ψA(x)γµS
F
MC
(x − y)γρψB(y) :

+(t ′a)AC(t
′
b)CB : ψA(x)γµγ5S

F
MC
(x − y)γργ5ψB(y) :

+(ta)AC(t
′
b)CB : ψA(x)γµS

F
MC
(x − y)γργ5ψB(y) :

+(t ′a)AC(tb)CB : ψA(x)γµγ5S
F
mC
(x − y)γρψB(y) : −(a ↔ b, µ↔ ρ, x ↔ y)]

+(ta)AB(tb)BAP
F
MAMB ;µρ(x − y)

+(t ′a)AB(t
′
b)BAQ

F
MAMB ;µρ(x − y)}

+ : �a(x)�b(y) : {[(sa)AC(sb)CB : ψA(x)S
F
MC
(x − y)ψB(y) :

+(s ′a)AC(s
′
b)CB : ψA(x)γ5S

F
MC
(x − y)γ5ψB(y) :

+(sa)AC(s
′
b)CB : ψA(x)S

F
MC
(x − y)γ5ψB(y) :

+(s ′a)AC(sb)CB : ψA(x)γ5S
F
MC
(x − y)ψB(y) : −(a ↔ b, x ↔ y)]

+(sa)AB(sb)BAP
F
MA,MB

(x − y) + (s ′a)AB(s
′
b)BAQ

F
MA,MB

(x − y)}
+ : Aµ

a (x)�
ρ

b (y) : {[(ta)AC(sb)CB : ψA(x)γµS
F
MC
(x − y)ψB(y) :
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−(sb)AC(ta)CB : ψA(y)S
F
MC
(y − x)γµψB(x) :

+(t ′a)AC(s
′
b)CB : ψA(x)γµγ5S

F
MC
(x − y)γ5ψB(y) :

−(s ′b)AC(t ′a)CB : ψA(y)γ5S
F
MC
(y − x)γµγ5ψB(x) :

+(ta)AC(s
′
b)CB : ψA(x)γµS

F
MC
(x − y)γ5ψB(y) :

−(s ′b)AC(ta)CB : ψA(y)γ5S
F
MC
(y − x)γµψB(x) :

+(t ′a)AC(sb)CB : ψA(x)γµS
F
MC
(x − y)γ5ψB(y) :

−(sb)AC(t ′a)CB : ψA(y)γ5S
F
MC
(y − x)γµψB(x) :

+(ta)AB(sb)BAP
F
MA,MB ;µ(x − y)

+(t ′a)AB(s
′
b)BAQ

F
MA,MB ;µ(x − y)]− [x ↔ y]}

−DF
ma
(x − y) : jaµ(x)j

µ
a (y) :

−(ta)AC(ta)CB[: ψA(x)γµ@
F
ma,MC

(x − y)γ µψB(y) : +(x ↔ y)]

−(t ′a)AC(t ′a)CB[: ψA(x)γµγ5@
F
ma,MC

(x − y)γ µγ5ψB(y) : +(x ↔ y)]

−(ta)AC(t ′a)CB[: ψA(x)γµ@
F
ma,MC

(x − y)γ µγ5ψB(y) : +(x ↔ y)]

−(t ′a)AC(ta)CB[: ψA(x)γµγ5@
F
ma,MC

(x − y)γ µψB(y) : +(x ↔ y)]

−gµν[(ta)AB(ta)BAP
F
ma;MA,MB ;µν(x − y)

+(t ′a)AB(t
′
a)BAQ

F
ma;MA,MB ;µν(x − y)]

+DF
m∗a
(x − y) : ja(x)ja(y) :

+(sa)AC(sa)CB[: ψA(x)@
F
ma,MC

(x − y)ψB(y) : +(x ↔ y)]

+(s ′a)AC(s
′
a)CB[: ψA(x)γ5@

F
ma,MC

(x − y)γ5ψB(y) : +(x ↔ y)]

+(sa)AC(s
′
a)CB[: ψA(x)@

F
ma,MC

(x − y)γ5ψB(y) : +(x ↔ y)]

+(s ′a)AC(sa)CB[: ψA(x)γ5@
F
ma,MC

(x − y)ψB(y) : +(x ↔ y)]. (4.1.47)

Here h(1)abc ≡ 1
2 (f

′
bcamb + f ′acbma) and h(2)abc ≡ f ′abcmb.

Let us note that the expressions (2.2.12) and (2.2.13) for the currents can be also written
as follows:

jµa (x) =: ψ+
A(x)(t

+
a )ABγ

µψ+
B(x) : + : ψ−A (x)(t

−
a )ABγ

µψ−B (x) : (4.1.48)

and

ja(x) =: ψ−A (x)(s
+
a )ABψ

+
B(x) : + : ψ+

A(x)(s
−
a )ABψ

−
B (x) : (4.1.49)

where we have defined

ψε
A(x) ≡

1 + εγ5

2
ψA(x) ε = ± (4.1.50)

and the components corresponding to the signs + (−) are called chiral components of the
currents.

4.2. The conservation of the BRST current

The expression

j
µ

BRST(x) ≡ (∂ · Aa + ma�a)
↔
∂
µ

ua (4.2.1)
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is called the BRST current. One can verify easily the conservation of the BRST current:

∂µj
µ

BRST = 0. (4.2.2)

Formally, the BRST charge is given by

Q =
∫

R3
d3x j 0

BRST(x). (4.2.3)

We want to investigate the conservation of this current in higher orders of perturbation
theory. We present here the analysis in the second order. First we have:

Proposition 4.4. The following relation is verified:

[jµBRST(x1), T (x2)] = Dma
(x1 − x2)A

µ
a (x1, x2) + ∂µDma

(x1 − x2)Ba(x1, x2)

+∂ρDma
(x1 − x2)A

µρ
a (x1, x2) + ∂µ∂ρDma

(x1 − x2)B
ρ
a (x1, x2) (4.2.4)

where

Ba(x1, x2) = h
(2)
bac : ∂νA

ν
a(x1)�b(y)uc(x2) : +mah

(2)
bac : �a(x1)�b(y)uc(x2) :

−maf
′
abc : ua(x1)∂ρ�b(x2)A

ρ
c (x2) : −mah

(1)
abc : ua(x1)Abρ(x2)A

ρ
c (x2) :

−mah
(2)
abc : ua(x1)ũb(x2)uc(x2) :

−3maf
′′
bca : ua(x)�b(y)�c(y) : −ma : ua(x1)jb(x2) : (4.2.5)

and

Bρ
a (x1, x2) = fbca : ∂νA

ν
a(x1)A

ρ

b (x2)uc(x2) : −mafbca : �a(x1)A
ρ

b (x2)uc(x2) :

+fabc : ua(x1)Abν(x2)F
νρ
c (x2) : −fabc : ua(x1)ub(x2)∂

ρũc(x2) :

+f ′bca : ua(x1)�b(x2)∂
ρ�c(x2) :

+mcf
′
cba : ua(x1)�b(x2)A

ρ
c (x2) : + : ua(x1)j

ρ
a (x2) : . (4.2.6)

The expressions for h(1)cab and h(2)abc have been given in the preceding proposition.

The computations are long but straightforward. Applying the procedures of the preceding
subsection we obtain from here:

Proposition 4.5. The expression

T c(j
µ

BRST(x1), T (x2)) = DF
ma
(x1 − x2)A

µ
a (x1, x2) + ∂µDF

ma
(x1 − x2)Ba(x1, x2)

+∂ρDF
ma
(x1 − x2)A

µρ
a (x1, x2) + ∂µ∂ρD

F
ma
(x1 − x2)B

ρ
a (x1, x2) (4.2.7)

is valid for the canonical chronological product.

We have the following result which can be interpreted as a conservation of the BRST
current in the second order of perturbation theory.

Theorem 4.6. There exists a finite renormalization such that one has the following
conservation law:

∂

∂x
µ

1

T (j
µ

BRST(x1), T (x2)) = i

(
∂

∂x
µ

1

δ(x1 − x2)

)
T µ(x1). (4.2.8)

Proof. We start from the obvious relation
∂

∂x
µ

1

[(jµBRST(x1), T (x2)] = 0 (4.2.9)
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and perform the canonical causal splitting using the expression of the commutator derived
above. If we proceed in analogy to the derivation of the consistency conditions for the second-
order chronological products we obtain

∂

∂x
µ

1

T c(j
µ

BRST(x1), T (x2)) = −i
∂

∂x
µ

1

[
δ(x1 − x2)N

µ(x1)
]− iδ(x1 − x2)A(x1) (4.2.10)

where

A(x1) ≡
∑
a

[
Ba(x1, x1)−

(
∂B

µ
a

∂x
µ

1

)
(x1, x1)

]
(4.2.11)

and

Nµ(x1) ≡
∑
a

Bµ
a (x1, x1). (4.2.12)

Now it is a matter of computation to prove that we have A = −∂µT µ. If we perform the finite
renormalization T (jµBRST(x1), T (x2)) = T c(j

µ

BRST(x1), T (x2))−iδ(x1−x2) [Nµ(x1) + T µ(x)]
then we obtain the relation from the statement. �

Remark 4.7. If we perform the finite renormalization

T ′(jµBRST(x1), T (x2)) = T c(j
µ

BRST(x1), T (x2))− iδ(x1 − x2)N
µ(x1)

then we obtain the relation
∂

∂x
µ

1

T ′(jµBRST(x1), T (x2)) = iδ(x1 − x2)
∂

∂x
µ

1

T µ(x1). (4.2.13)

Using the method of appendix B of [10] (where the case of QED is investigated) we can
obtain from (4.2.8) that the BRST current is conserved if the coupling constant (a test function)
is constant in a neighbourhood of the point x.

5. Third-order gauge invariance

5.1. The derivation of the anomaly

In this section we will analyse the possible obstructions to factorization of the S-matrix in
the third order of the perturbation theory. In principle, there is no difference with respect to
the preceding section. Nevertheless, the details of distribution splitting are considerably more
complicated and the same is true for the whole combinatorial argument.

First we give a standard regularization procedure of the distributions appearing in the
lists (4.1.9)–(4.1.12). We choose m0 > 0 different from all masses of the model and write the
Pauli–Villars distribution for any mass as follows:

Dm = Dm0 + Dreg; (5.1.1)

one can check that the order of singularity of Dreg is

ω(Dreg) = −4. (5.1.2)

The decomposition (5.1.1) induces a similar decomposition for all distributions in the
lists (4.1.9)–(4.1.12): we have a sum of two pieces

> = >0 + >reg (5.1.3)

where

ω(>0) = ω(>) ω(>reg) = ω(>)− 2 (5.1.4)
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and the support properties of >0 in the momentum space are more convenient. We have

>̃0,(±)(p) ∼ θ(±p0)f (p
2) (5.1.5)

with supp(f ) ⊂ {p2 � λ2} for some parameter with mass significance λ > 0 (for the
distributions >̃(±)(p) we can have in principle λ = 0).

The main result is contained in the following theorem:

Theorem 5.1. Suppose that the distribution T (x1, x2, x3) verifies the condition (3.1.10). Then
it verifies the formal adiabatic limit condition if and only if, beside the conditions from the
statement of theorem 2.1, we also have the following set of supplementary conditions:

Tr
(
t+
a {t+

b , t
+
c }

) = Tr
(
t−a {t−b , t−c }

)
(5.1.6)

f ′abcg
′
bfgh + f ′f bcg

′
bagh + f ′gbcg

′
baf h + f ′hbcg

′
bafg = 0. (5.1.7)

Proof. (i) As before, we will investigate the third-order commutators

D(x1, x2; x3) = [T (x3), T (x1, x2)]− [T (x1, x3), T (x2)]− [T (x2, x3), T (x1)] (5.1.8)

and

D
µ

1 (x1, x2; x3) = [T (x3), T
µ

1 (x1, x2)]− [T µ

1 (x1, x3), T (x2)]− [T (x2, x3), T
µ

1 (x1)]

D
µ

2 (x1, x2; x3) = [T (x3), T
µ

2 (x1, x2)]− [T (x1, x3), T
µ

1 (x2)]− [T µ

1 (x2, x3), T (x1)]
D

µ

3 (x1, x2; x3) = [T µ

1 (x3), T (x1, x2)]− [T µ

2 (x1, x3), T (x2)]− [T µ

2 (x2, x3), T (x1)].

(5.1.9)

All these operator-valued distributions have the causal support property.
(ii) We convene to denote generically by

>
(+)
3 (x1 − x2) =

∏
i

〈�,φi(x1)ψi(x2)�〉

>
(+)
1 (x2 − x3) =

∏
j

〈�,φj (x2)χj (x3)�〉

>
(+)
2 (x3 − x1) =

∏
k

〈�,ψk(x3)χk(x1)�〉
(5.1.10)

the distributions appearing in the analysis of the second-order perturbation theory i.e. the
lists (4.1.9)–(4.1.12). They appear with these three combinations of arguments from various
Wick contractions in the preceding formulæ for the commutators. Here the fields φ(x1),
ψ(x2), χ(x3)) are factors in the Wick monomials of T (x1), T (x2), T (x3) respectively. If
Fermi fields are present one has to take into account the signs induced by the permutation of
the non-commuting factors in defining the associated distributions >(−).

We have to investigate the types of numerical distribution with causal support which can
appear from the computation of the four commutators. These distributions will depend only
on two variables ξ1 ≡ x1 − x3, ξ2 ≡ x2 − x3 due to translation invariance. It convenient to
use again a graph theory terminology. We define a super-line to be the assemble of lines of
a Feynman graph connecting two vertices. Then the notions of super-tree and super-loop are
obvious and we have only such types of graph. We give the generic form of the distributions
associated with them.

(a) First we obtain some distributions containing a factor δ from commutators containing
a factor δ(x − y)L(x) or δ(x − y)Lµ(x). In this case we obtain distributions of the type

d(>)(x1, x2; x3) = δ(x1 − x2)>(x2 − x3) (5.1.11)

and other permutations of the variables. Here the distribution > is one from the lists (4.1.9)–
(4.1.12).

(b) Next, from super-tree graphs we obtain three types of distribution.
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(b1) There exists a super-line between x1 and x3 and a super-line between x2 and x3. In
this case one obtains distributions of the form

d(3)(x1, x2; x3) = >
(+)
1 (x2 − x3)>

(−)
2 (x3 − x1)−>

(−)
1 (x2 − x3)>

(+)
2 (x3 − x1)

+>F
2 (x3 − x1)>1(x2 − x3)−>F

1 (x2 − x3)>2(x3 − x1). (5.1.12)

The causal support of this type of distribution can be checked if one derives alternative
formulæ. If

d
adv(ret)
(3) (x1, x2; x3) = >

ret(adv)
2 (x3 − x1)>

adv(ret)
1 (x2 − x3) (5.1.13)

then we have from (4.1.46)

d(3)(x1, x2; x3) = dadv
(3) (x1, x2; x3)− d ret

(3)(x1, x2; x3). (5.1.14)

Moreover, if one uses the expression of the third-order chronological product (3.1.22) one
can prove that the distribution of this type produces the Feynman propagator

dF(3)(x1, x2; x3) = >F
2 (x3 − x1)>

F
1 (x2 − x3). (5.1.15)

(b2) There exists a super-line between x1 and x2 and a super-line between x1 and x3. In
this case one obtains distributions of the form

d(1)(x1, x2; x3) = >
(+)
2 (x3 − x1)>

(−)
3 (x1 − x2)−>

(−)
2 (x3 − x1)>

(+)
3 (x1 − x2)

+>AF
3 (x1 − x2)>2(x3 − x1)−>F

2 (x3 − x1)>3(x1 − x2). (5.1.16)

The causal support of this type of distribution can be also checked if one derives the
alternative formulæ. We define

d
adv(ret)
(1) (x1, x2; x3) = >

ret(adv)
3 (x1 − x2)>

ret(adv)
1 (x3 − x1) (5.1.17)

and we have as before

d(1)(x1, x2; x3) = dadv
(1) (x1, x2; x3)− d ret

(1)(x1, x2; x3). (5.1.18)

If one uses the expression of the third-order chronological product (3.1.22) one can prove
that the distribution of this type produces the Feynman propagator

dF(1)(x1, x2; x3) = >F
3 (x1 − x2)>

F
2 (x3 − x1). (5.1.19)

(b3) There exists a super-line between x1 and x2 and a super-line between x2 and x3. In
this case one obtains distributions d(2)(x1, x2; x3) of the same form as in case (b2) if one makes
x1 ↔ x2.

We will denote the distributions associated with super-tree graphs byd(i)(>,>′)(x1, x2; x3),
indicating explicitly the distributions in one variable >, >′ from the lists (4.1.9)–(4.1.12) in-
volved in the construction. One can verify that if the orders of singularity of these distributions
are ω and ω′ respectively, then

ω(d(i)(>,>′)) = 4 + ω + ω′. (5.1.20)

(c) We consider now graphs with a purely bosonic super-loop. One obtains the following
type of distribution:

d(123)(x1, x2; x3) = >AF
3 (x1 − x2)

[
>

(+)
1 (x2 − x3)>

(−)
2 (x3 − x1)

−>(−)
1 (x2 − x3)>

(+)
2 (x3 − x1)

]
+>F

2 (x3 − x1)
[
>

(+)
3 (x1 − x2)>

(−)
1 (x2 − x3)

−>(−)
3 (x1 − x2)>

(+)
1 (x2 − x3)

]
+>F

1 (x2 − x3)
[
>

(+)
1 (x3 − x1)>

(−)
3 (x1 − x2)

−>(−)
1 (x3 − x1)>

(+)
3 (x1 − x2)

]; (5.1.21)
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for a fermionic super-loop an overall −1 sign appears.
The causal support property can be checked by deriving two alternative formulæ:

d(123)(x1, x2; x3) = −>ret
3 (x1 − x2)

[
>

(+)
1 (x2 − x3)>

(−)
2 (x3 − x1)

−>(−)
1 (x2 − x3)>

(+)
2 (x3 − x1)

]
+>adv

2 (x3 − x1)
[
>

(+)
3 (x1 − x2)>

(−)
1 (x2 − x3)

−>(−)
3 (x1 − x2)>

(+)
1 (x2 − x3)

]
+>adv

1 (x2 − x3)
[
>

(+)
1 (x3 − x1)>

(−)
3 (x1 − x2)

−>(−)
1 (x3 − x1)>

(+)
3 (x1 − x2)

]
= −>adv

3 (x1 − x2)
[
>

(+)
1 (x2 − x3)>

(−)
2 (x3 − x1)

−>(−)
1 (x2 − x3)>

(+)
2 (x3 − x1)

]
+>ret

2 (x3 − x1)
[
>

(+)
3 (x1 − x2)>

(−)
1 (x2 − x3)

−>(−)
3 (x1 − x2)>

(+)
1 (x2 − x3)

]
+>ret

1 (x2 − x3)
[
>

(+)
1 (x3 − x1)>

(−)
3 (x1 − x2)

−>(−)
1 (x3 − x1)>

(+)
3 (x1 − x2)

]
. (5.1.22)

We denote suggestively this type of distribution by d(123)(>1,>2,>3)(x1, x2; x3) where
>i , i = 1, 2, 3 are distributions from the lists (4.1.9)–(4.1.12) and we have concerning the
order of singularity

ω(d(123)(>1,>2,>3)) = 4 +
∑
i

ω(>i). (5.1.23)

We say now something about the generic momentum space structure of such a distribution.
First one has to obtain from the explicit formulæ for the distributions > in one variable that
in all cases

>̃i

(±)
(p) ∼ θ(±p0)fi(p

2) (5.1.24)

with supp(fi) ⊂ {p2 � λ2
i } for some parameters with mass significance λi � 0, i = 1, 2, 3.

We consider now the Taylor transform of >(123)(ξ1, ξ2) and we use the notation K ≡ k1 + k2;
the generic structure is

>̃(123)(k1, k2) = θ(k2
1 − (λ2 + λ3)

2)g1 + θ(k2
2 − (λ3 + λ1)

2)g2 + θ(K2 − (λ1 + λ2)
2)g3.

(5.1.25)

It follows that if at least two of the masses λi � 0, i = 1, 2, 3 are strictly positive, then
(0, 0) 	∈ supp(>̃(123)(k1, k2). This observation is useful because for causal distributions with
such support property in momentum space one can use the so-called central formula for causal
decomposition of distributions [23]. If the conditions of validity of the central formula are not
met we will have to use a regularization procedure.

(ii) We investigate the possible Ward identities and obstructions to causal splitting. First
we consider case (b). We illustrate this case on the the distribution

dµ ≡ d(3)(∂
µDm,>) (5.1.26)

where> is arbitrary. The other cases can be treated similarly. First we derive the Ward identity

∂µd
µ = −δ(x1 − x3)>(x2 − x3) + m2DF

m(x1 − x3)>(x2 − x3). (5.1.27)

Using the formula for the causal splitting (5.1.13) one can see that the preceding identity
is preserved by the operation of distribution splitting.
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Next, we consider case (c). We have to study separately the case when the super-loop
contains at most one Dirac line and the case when we have three Dirac lines. We illustrate the
first case by the distribution

dµ = d(123)(∂
µDm1 ,Dm2 ,Dm3) m1 > 0; (5.1.28)

the other cases can be treated similarly. The Ward identity is in this case

∂µd
µ = −δ(x2 − x3)Dm2,m3(x3 − x1) + · · · (5.1.29)

where by . . . we mean contributions with the order of singularity strictly smaller than zero.
One computes immediately that both sides have the order of singularity equal to unity. If we
havem2 +m3 > 0 then we can apply the central decomposition formula and obtain no anomaly.
In the opposite case, we use the standard regularization procedure (5.1.1) of the distributions
appearing in the lists (4.1.9)–(4.1.12) presented at the beginning of this subsection. The
decomposition (5.1.1) induces a similar decomposition for the distributions of the type d(i):

d(i) = d0
(i) + d reg (5.1.30)

where

ω(d0) = ω(d) ω(d reg) = ω(d)− 2 (5.1.31)

and the support properties of d0 in the momentum space are more convenient: (0, 0) 	∈
supp(d̃0

(i)).
If we apply this decomposition to the distributions dµ and d we obtain two Ward identities,

one for each part. The first one can be split causally without anomalies using the central
decomposition formula. For the second identity we note that both sides have order of singularity
strictly lower than−1 so this relation can be also split causally without anomalies as explained
at the end of section 3. In this way we can obtain a anomaly-free decomposition of the Ward
identity we have started with. One has to check case by case this argument for all the other
types of distribution of type (c) without Dirac loops.

A very important observation is that the preceding argument is not valid for distributions
associated with super-loops containing three Dirac lines. The reason is that one is led
to the computation of some traces. To be more specific the relevant terms from the first
commutator (5.1.9) are

D
µ

1 (x1, x2; x3) = d
µνρ

abc (x1, x2; x3) : ua(x1)Abν(x2)Acρ(x3) :

+dµνabc(x1, x2; x3) : ua(x1)�b(x2)Acν(x3) : +(x2 ↔ x3)

+dµabc(x1, x2; x3) : ua(x1)�b(x2)�c(x3) :

+dµa (x1, x2; x3)ua(x1) + · · · (5.1.32)

where by · · · we mean the terms which cannot produce anomalies. Let us note that all these
terms are obtained from Wick contractions of the pieces of the interaction Lagrangian of the
type (2.2.7).

The distributions appearing in this formula are sums of distributions of the type d(123)

because of the traces, but in this case the trace operation can annihilate the most singular term
and instead of (5.1.23) we might have

ω(d) < 4 +
∑
i

ω(>i). (5.1.33)

It follows that these distributions must be studied separately and some explicit computation
are required.

(iii) All the distributions appearing in the formula (5.1.32) have eight contributions
corresponding to the decomposition of the three currents involved in (2.2.7) into the vectorial
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and axial components. If we compute the contribution corresponding to three vectorial factors,
then the others can be obtained by simple substitutions. Let us consider this pure vector
contribution to dµνρabc (x1, x2; x3); the explicit expression is

d
µνρ

abc;VVV = (ta)AB(tb)BC(tc)CAd
µνρ(V )

MC,MA,MB
+ (ta)AB(tc)BC(tb)CAd

νµρ(V )

MC,MB,MA
(5.1.34)

where we have defined for arbitrary massesM1,M2,M3 the following fundamental distribution

d
µνρ(V )

M1,M2,M3
(x1, x2; x3) = Tr

{
SAFM3

(x1 − x2)γ
ν
[
S
(−)
M1

(x2 − x3)γ
ρS

(+)
M2
(x3 − x1)

−S(+)M1
(x2 − x3)γ

ρS
(−)
M2

(x3 − x1)
]
γ µ

+SFM1
(x2 − x3)γ

ρ
[
S
(−)
M2

(x3 − x1)γ
µS

(+)
M3
(x1 − x2)

−S(+)M2
(x3 − x1)γ

ρS
(−)
M3

(x1 − x2)
]
γ ν

+SFM2
(x3 − x1)γ

µ
[
S
(−)
M3

(x1 − x2)γ
νS

(+)
M1
(x2 − x3)

−S(+)M3
(x1 − x2)γ

νS
(−)
M1

(x2 − x3)
]
γ ρ

}
(5.1.35)

which is similar to (5.1.21); compare also to formula (5.3.11) from [23]. It also has causal
support: one can obtain quite easily alternative expressions having the structure (5.1.22).

The entire vectorial contribution is now obtained if we add the contributions following
from d

µνρ

abc;VVV if we perform the following simple transforms:

ta → t ′a tb → t ′b γ µ→ γ µγ5 γ ν → γ νγ5 (5.1.36)

and the two other similar possibilities. Using the formula (4.1.13) we obtain the following
form for the pure vectorial part:

d
µνρ

abc;V = (ta)AB(tb)BC(tc)CAd
µνρ(V )

MC,MA,MB
+ (ta)AB(tc)BC(tb)CAd

νµρ(V )

MC,MB,MA

+(t ′a)AB(t
′
b)BC(tc)CAd

µνρ(V )

MC,MA,−MB
+ (t ′a)AB(tc)BC(t

′
b)CAd

νµρ(V )

MC,MB,−MA

+(ta)AB(t
′
b)BC(t

′
c)CAd

µνρ(V )

−MC,MA,MB
+ (ta)AB(t

′
c)BC(t

′
b)CAd

νµρ(V )

−MC,MB,MA

+(t ′a)AB(tb)BC(t
′
c)CAd

µνρ(V )

MC,−MA,MB
+ (t ′a)AB(t

′
c)BC(tb)CAd

νµρ(V )

MC,−MB,MA
. (5.1.37)

One notices that the vectorial part of dµνρabc is expressed only in terms of the distribution of
the type dµνρ(V )M1,M2,M3

.
By similar transforms one can obtain the pure axial part. One defines in analogy to (5.1.34)

the distribution dµνρ(A)M1,M2,M3
by inserting a factor γ5:

d
µνρ(A)

M1,M2,M3
(x1, x2; x3) = Tr γ5 {· · ·} (5.1.38)

where by {· · ·} we mean the same parenthesis as in (5.1.35). The pure axial contribution to
d
µνρ

abc is similar to (5.1.37). The only relevant thing is that it is expressed only in terms of the
new distribution dµνρ(A)M1,M2,M3

. It follows therefore that the distribution dµνρabc can be expressed in

terms of two independent distributions: dµνρ(V )M1,M2,M3
and d

µνρ(A)

M1,M2,M3
. One can prove quite easily

that the orders of singularities are

ω(d
µνρ(V )(A)

M1,M2,M3
) = 1. (5.1.39)

Let us note in passing that the asymptotic behaviour of the distribution

d
µνρ

abc = d
µνρ

abc;V + d
µνρ

abc;A (5.1.40)

is given by

d
µνρ

abc ∼ Vabcd
µνρ

(V ) + Aabcd
µνρ

(A) (5.1.41)
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where the axial tensor Aabc is given by the expression (1.0.1) from the introduction, the vector
tensor is given by a similar expression

Vabc ≡ Tr
(
t+
a [t+

b , t
+
c ] + t−a [t−b , t

−
c ]

) = fbcd Tr
(
t+
a t

+
d + t−a t

−
d

)
(5.1.42)

and

d
µνρ

(V )(A) ≡ d
µνρ(V )(A)

0,0,0 . (5.1.43)

A similar investigation can be performed for the other distributions appearing in the
formula (5.1.32). The distribution d

µν

abc can be expressed in terms of two independent
distributions: dµν(V )M1,M2,M3

and d
µν(A)

M1,M2,M3
, which can be obtained from d

µνρ(V )

M1,M2,M3
and d

µνρ(A)

M1,M2,M3

making γ ρ → 1. The order of singularity of these distributions is lower than naive power
counting indicates. They can be written as follows:

d
µν(V )(A)

M1,M2,M3
=

3∑
i=1

Mid
µν(V )(A)

i (5.1.44)

with

ω(d
µν(V )(A)

i ) = 0. (5.1.45)

Analogously, the distribution d
µ

abc can be expressed in terms of two independent
distributions: dµ(V )M1,M2,M3

and d
µ(A)

M1,M2,M3
, which can be obtained from d

µν(V )

M1,M2,M3
and d

µν(A)

M1,M2,M3

making γ ν → 1. We also have

ω(d
µ(V )(A)

M1,M2,M3
) = 1. (5.1.46)

Finally, the distribution d
µ
a can be expressed in terms of two independent distributions:

d
µ(V )

m;M1,M2,M3
and dµ(A)m;M1,M2,M3

, which can be obtained from d
µ(V )

M1,M2,M3
and dµ(A)M1,M2,M3

by making
SM1 → @m,M1 . We have in this case

ω(d
µ(V )(A)

m;M1,M2,M3
) = 3. (5.1.47)

We also need the distributions d(V )M1,M2,M3
and d

(V )

m;M1,M2,M3
, which can be obtained from

d
µ(V )

M1,M2,M3
and d

µ(V )

m;M1,M2,M3
respectively by making γ µ → 1. In this case we have a structure

similar to (5.1.44) and a similar result for the order of singularity.
We can easily see that all distributions d...(A)... are completely antisymmetric in the Lorentz

indices due to traces involving a γ5 matrix. It is not difficult to prove that one can impose
a supplementary condition on the causal splitting procedure, namely the preservation of this
symmetry property.

The distributions appearing in the third commutator from (5.1.9) can be obtained from the
preceding ones by making the substitution x1 ↔ x2 and this doubles the value of the possible
anomalies originating from the first commutator.

The distributions appearing in the second commutator from (5.1.9) can be obtained from
the preceding ones by more subtle transforms. For case (b) and case (c) without Dirac loops
we have the same list of distributions and there are no anomalies. For case (c) with Dirac loops
we have to consider

d
µνρ

M1,M2,M3
→ d

ρνµ

M1,M2,M3

d
µν

M1,M2,M3
(x1, x2; x3)→ f

µν

M2,M3,M1
(x1, x2; x3) ≡ d

νµ

M2,M3,M1
(x2, x3; x1)

d
µ

M1,M2,M3
(x1, x2; x3)→ f

µ

M1,M2,M3
(x1, x2; x3) ≡ d

µ

M2,M3,M1
(x3, x1; x2)

d
µ

m;M1,M2,M3
(x1, x2; x3)→ f

µ

m;M1,M2,M3
(x1, x2; x3) ≡ d

µ

m;M2,M3,M1
(x3, x1; x2).

(5.1.48)
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(iv) Now we can give the list of Ward identities verified by these distributions. Using the
Dirac equation for the propagators we obtain

i
∂

∂x
µ

1

d
µνρ(V )

M1,M2,M3
(x1, x2; x3) = (M2 −M3)f

νρ(V )

M1,M2,M3
(x1, x2; x3)

+iδ(x1 − x2)P
νρ

M1,M2
(x1 − x3) + iδ(x1 − x3)P

ρν

M1,M3
(x2 − x3) (5.1.49)

i
∂

∂x
µ

3

d
ρνµ(V )

M1,M2,M3
(x1, x2; x3) = (M2 −M1)d

ρν(V )

M1,M2,M3
(x1, x2; x3)

+iδ(x1 − x3)P
ρν

M1,M3
(x2 − x3)− iδ(x2 − x3)P

ρν

M2,M3
(x1 − x3) (5.1.50)

i
∂

∂x
µ

1

d
µν(V )

M1,M2,M3
(x1, x2; x3) = (M2 −M3)d

ν(V )
M2,M3,M1

(x2, x3; x1)

+iδ(x1 − x2)P
ν
M1,M2

(x1 − x3) + iδ(x1 − x3)P
ν
M1,M3

(x2 − x3) (5.1.51)

i
∂

∂x
µ

3

f
µν(V )

M1,M2,M3
(x1, x2; x3) = (M2 −M1)d

ν(V )
M1,M2,M3

(x2, x3; x1)

+iδ(x1 − x3)P
ν
M1,M3

(x2 − x3)− iδ(x2 − x3)P
ν
M2,M3

(x1 − x3) (5.1.52)

i
∂

∂x
µ

1

d
µ(V )

M1,M2,M3
(x1, x2; x3) = (M2 −M3)d

(V )
M1,M2,M3

(x1, x2; x3)

+iδ(x1 − x3)PM1,M2(x2 − x3) + iδ(x2 − x3)PM1,M3(x1 − x3) (5.1.53)

i
∂

∂x
µ

1

d
µ(V )

m;M1,M2,M3
(x1, x2; x3) = (M2 −M3)d

(V )

m;M1,M2,M3
(x1, x2; x3)

+iδ(x1 − x3)Pm;M1,M2(x2 − x3) + iδ(x2 − x3)Pm;M1,M3(x1 − x3). (5.1.54)

The Ward identities for the axial distributions present a notable difference. Because of
the trace operation, the delta terms disappear. Using also formula (4.1.13) we obtain

i
∂

∂x
µ

1

d
µνρ(A)

M1,M2,M3
(x1, x2; x3) = (M2 + M3)f

νρ(A)

M1,M2,M3
(x1, x2; x3) (5.1.55)

i
∂

∂x
µ

3

d
ρνµ(A)

M1,M2,M3
(x1, x2; x3) = (M1 + M2)d

νρ(A)

M1,M2,M3
(x1, x2; x3) (5.1.56)

i
∂

∂x
µ

1

d
µν(A)

M1,M2,M3
(x1, x2; x3) = (M2 + M3)d

ν(A)
M1,M2,M3

(x2, x3; x1) (5.1.57)

i
∂

∂x
µ

3

f
µν(A)

M1,M2,M3
(x1, x2; x3) = (M1 + M2)d

ν(A)
M1,M2,M3

(x2, x3; x1) (5.1.58)

i
∂

∂x
µ

1

d
µ(A)

M1,M2,M3
(x1, x2; x3) = 0 (5.1.59)

i
∂

∂x
µ

1

d
µ(A)

m;M1,M2,M3
(x1, x2; x3) = 0. (5.1.60)

The causal splitting of these two types of Ward identity is sensibly different. Let us first
consider only the first six equations (the vectorial Ward identities). Because of the delta terms
in the right-hand sides, we have the same order of singularity for both sides in all vectorial
Ward identities; if the conditions of application of the central splitting formula are met we
obtain no anomalies. If some of the masses are null, one has to use a regularization procedure
as for case (b). More precisely one can prove that the decomposition (5.1.1) induces a similar
decomposition for the distributions of the type d(123):

d(123) = d0
(123) + d

reg
(123) (5.1.61)
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where

ω(d0
(123)) = ω(d(123)) ω(d

reg
(123)) = ω(d(123))− 4 (5.1.62)

and the support properties of d0
(123) in the momentum space are more convenient: (0, 0) 	∈

supp(d̃0
(123)).

We turn now to the last six equations (the axial Ward identities). The previous argument is
still valid for the last two of them. We consider some generic anomalies P ν

1 , P ν
3 obtained after

the causal splitting of the identities (5.1.57) and (5.1.58). If we differentiate the corresponding
equations with respect to xν3 and xν1 respectively, we obtain from antisymmetry the consistency
equations

∂

∂xν3
P ν

1 = 0
∂

∂xν1
P ν

3 = 0 (5.1.63)

and this leads to Pµ

i = 0, i = 1, 3.
The Ward identities (5.1.55) and (5.1.56) can produce anomalies of the type

P νρ(X) = const × ενραβ
∂2

∂xα1 ∂x
β

2

δ(X) (5.1.64)

for some positive constant const. The explicit expression of this constant can be computed
as in [23] section 5.3. One cannot eliminate such a type of anomaly from both equations by
redefinition. The resulting anomaly is then

A(X) = const × Aabcε
νραβ ∂2

∂xα1 ∂x
β

2

δ(X) : ua(x1)Abν(x2)Acρ(x3) : (5.1.65)

where

Aabc ≡ 2 Tr
(
t ′a{t ′b, t ′c} + ta{tb, t ′c} + t ′a{tb, tc} + ta{t ′b, t ′c}

)
. (5.1.66)

Performing some redefinitions of the expressions Aµ

l (X) (‘integration by parts’) we can
reexpress this axial anomaly in the following form:

AABBJ (X) = const × Aabcεµνρσ δ(X) : ua(x1)F
µν

b (x1)F
ρσ
c (x3) : (5.1.67)

and we can also show that the tensor depending only on the group indices Aabc is in fact given
by the formula (1.0.1) from the introduction. The anomaly AABBJ is a cocycle

dQAABBJ = 0 (5.1.68)

but it is not a coboundary, so disappears iff we have the conditionAabc = 0 i.e. the well known
condition (5.1.6) from the statement.

(v) We still have to investigate the possible anomalies originating from the delta terms,
i.e. from distributions associated with graphs of type (a). We present here briefly the analysis
of these terms. One can compute the commutators and select the terms which will lead, in
principle, to an anomaly. We obtain

[T µ

1 (x), L(y)] = fabcfdcf fdgh
∂

∂xµ
Dmc

(x − y) : ua(x)Abν(x)Afλ(y)A
ν
g(y)A

λ
h(y) :

−2fabcf
′
decf

′
dgh

∂

∂xµ
Dmc

(x − y) : ua(x)Abρ(x)A
ρ

h(y)�e(y)�g(y) :

+2f ′abcf
′
dbf f

′
dgh

∂

∂xµ
Dm∗b (x − y) : �a(x)uc(x)Afρ(y)A

ρ

h(y)�g(y) :

+4f ′abcg
′
bfgh

∂

∂xµ
Dm∗b (x − y) : �a(x)uc(x)�f (y)�g(y)�h(y) : + · · · .

(5.1.69)
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By · · · we mean the rest of the commutator which cannot produce anomalies. Now, as
in [16] and [17] we obtain from this commutator a possible anomaly:

A(x1, x2, x3) = δ(X)
[
A1(x1) + A2(x1) + A3(x1) + A4(x1)

]
(5.1.70)

where

A1(x) = ifabcfdcf fdgh : ua(x)Abν(x)Afλ(x)A
ν
g(x)A

λ
h(x) : (5.1.71)

A2(x) = −2ifabcf
′
decf

′
dgh : ua(x)Abρ(x)A

ρ

h(x)�e(x)�g(x) : (5.1.72)

A3(x) = 2if ′abcf
′
dbf f

′
dgh : �a(x)uc(x)Afρ(x)A

ρ

h(x)�g(x) : (5.1.73)

A4(x) = i
[
f ′abcg

′
bfgh + f ′f bcg

′
bagh + f ′gbcg

′
baf h + f ′hbcg

′
bafg

]
:

×�a(x)uc(x)�f (y)�g(x)�h(x) : . (5.1.74)

The results are:

• In [11] it is proved that A1 = 0 due to the Jacobi identity.
• One can also show, using the identity (2.1.19), that A2 + A3 = 0.
• If we try to write the anomaly A4 as a coboundary dQL(x) we should take

L(x) = g′acfgh : �a(x)�c(x)�f (x)�g(x)�h(x) : (5.1.75)

which is forbidden by the assumption that (3.1.10) is fulfilled.

So we obtain the second restriction from the statement. �

Remark 5.2. Recently [19] a new method was proposed to solve problems of consistency
such as those appearing in our paper. Instead of imposing a factorization condition of the
type (2.1.10) (or its ‘infinitesimal’ version (2.1.11)) one imposes a quantum analogue of the
Noether conservation law of a certain current. Presumably, this starting points are equivalent
and they should lead to the same sets of consistency conditions. This point deserves further
investigation. However, one should compare carefully the relation (4.2.8) expressing the
conservation law of the BRST current (and equivalent to the formal adiabatic limit condition)
to the relation (4.5) of [19] expression the quantum Noether postulate.

5.2. The standard model

We recall the notations from [17]. The Lie algebra is in this case su(2)×u(1) and the standard
basis Xa , a = 0, 1, 2, 3, has the usual commutation relations

[Xa,Xb] = εabcXc a, b = 1, 2, 3 [X0, Xa] = 0 a = 1, 2, 3. (5.2.1)

In the new basis Ya , a = 0, 1, 2, 3, defined by

Ya = g Xa a = 1, 2 Y3 = −g cos θ X3 + g′ sin θX0

Y0 = −g sin θ X3 − g′ cos θX0
(5.2.2)

(here the angle θ , determined by the condition cos θ > 0 is the Weinberg angle and the
constants g and g′ are real with g > 0) the structure constants are

f210 = g sin θ f321 = g cos θ f310 = 0 f320 = 0 (5.2.3)

and the rest of the constants are determined by antisymmetry. The choice of the masses is

m0 = 0 ma 	= 0 a = 1, 2, 3 (5.2.4)

(the particles created by A
µ

0 being the photons and the particles created by A
µ
a , a = 1, 2, 3,

the heavy bosons).
In [17] we found the following result.
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Theorem 5.3. In the SM, the following relations are true:
(a) The masses of the heavy bosons are constrained by

m1 = m2 = m3 cos θ. (5.2.5)

(b) The constants f ′abc are completely determined by the antisymmetry property (2.1.17)
and

f ′011 = f ′022 =
ε g

2
f ′033 =

ε g

2 cos θ
f ′210 = g sin θ

f ′321 = −f ′312 =
g

2
f ′123 = −g

cos 2θ

2 cos θ

(5.2.6)

the rest of them being zero. Here ε can take the values + or −.
(c) The constants f ′′abc are (partially) determined by

f ′′abc = 0 (a, b, c = 1, 2, 3) f ′′001 = f ′′002 = f ′′003 = f ′′012 = f ′′023 = f ′′031 = 0

f ′′011 = f ′′022 = f ′′033 =
εg

12m1
(mH

0 )
2.

(5.2.7)

Moreover, one can fix ε = +.

Remark 5.4. In [24] a dual point of view is followed: one gives the masses of the heavy
bosons m1 = m2 	= m3 and determines that the gauge algebra must be su(2)× u(1).

We consider the minimal SM containing only one generation of Dirac particles. In this
case one takes in the generic formalism from the preceding section N = 2 and

M ≡
(

0 0
0 me

)
. (5.2.8)

The components ψ2 (ψ1) correspond to the electron (the electronic neutrino) and me is
the electron mass. Remark that the neutrino mass is considered null.

The choice for the representations t±a is the following one:

t+
1 = 1

2gσ1 t+
3 = 1

2

(− g cos θσ3 + g′ sin θ1
)

t+
2 = 1

2gσ2 t+
0 = − 1

2

(
g sin θσ3 + g′ cos θ1

) (5.2.9)

and

t+
1 = t+

2 = 0 t+
3 = y sin θ t+

0 = −y cos θ (5.2.10)

where σi are the Pauli matrices. The representation property (4.1.5) is fulfilled for any matrix
y. However, we have the following elementary result.

Proposition 5.5. The interaction between the Dirac field of the electron ψ2 and the
electromagnetic field Aµ

0 has the usual form

e : ψ̄2γµψ2 : Aµ

0

(here e is the electron charge) iff

g = e

sin θ
g′ = − e

cos θ
(5.2.11)

and

y = 1

2
g′(1− σ3) = 1

2me
g′M. (5.2.12)

Next, we have:
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Proposition 5.6. The expressions for the matrices s+
a are

s+
0 =

me

2m1

(
0 0
0 1

)
s+

1 =
ime

2m1

(
0 0
1 0

)

s+
2 = −

me

2m1

(
0 0
1 0

)
s+

3 =
ime

2m1

(
0 0
0 1

)
.

(5.2.13)

Proof. One uses the relations (2.2.18) for a = 1, 2, 3 and obtains the expressions for s+
a ,

a = 1, 2, 3. Next, we use the relation (4.1.6), more precisely

t−a s
+
0 − s+

0 t
+
a = if ′0cas

+
c a = 1, 2, 3. (5.2.14)

This equation gives immediately the expression for s+
0 . �

The expression of the Higgs potential is obtained as in [4,13]. One can check that in this
way the usual SM is obtained.

5.3. Regularization and anomalies

We have succeeded in giving a complete analysis of the possible anomalies appearing in the SM
up to the third order of the perturbation theory. One would want to generalize this analysis to all
orders of the perturbation theory. It is possible that one can use the same type of combinatorial
argument, namely one considers possible distributions appearing in the commutators D(X) of
order n and observes that only the super-loop graphs with Dirac lines can produce anomalies.
Then it is quite possible that in higher orders the orders of singularity are sufficiently lower to
make possible a causal splitting of the Ward identities without anomalies. This seems to be
indicated by the traditional argument from the literature [1, 2, 25].
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