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Abstract

We complete our study of non-Abelian gauge theories in the framework of
the Epstein—Glaser approach to renormalization theory including in the model
an arbitrary number of Dirac fermions. We consider the consistency of the
model up to the third order of the perturbation theory. In the second order we
obtain pure group theoretical relations expressing a representation property of
the numerical coefficients appearing in the left- and right-handed components
of the interaction, Lagrangian. In the third order of the perturbation theory we
obtain the the condition of cancellation of the axial anomaly.

PACS numbers: 1110G, 1115, 1220

1. Introduction

In some preceding papers [16,17] we have extended results of Aste e al [3,4,13] concerning the
uniqueness of the non-Abelian gauge theory describing the consistent interaction of bosons of
spin 1. Itappeared that the gauge invariance principle is a natural consequence of the description
of spin-one particles in a factor Hilbert space: gauge invariance expresses the possibility of
factorizing the S-matrix to the physical space, which is usually constructed using the existence
of a supercharge Q according to the cohomological-type formula Hynys = Ker(Q)/Im (Q).
The obstructions to such a factorization process are the well known anomalies. The case
when the spin-one bosons of non-null mass are admitted in the game was studied in [4, 13]
for the concrete case of the electro-weak interaction i.e. when the gauge group is exactly
SUQ2) x U().

In [17] we analysed the same problem considering that the spin-one bosons can have
non-null masses; we did not impose any restriction on their number and masses and we did not
took into account the matter fields. Similar results were obtained in [24]. We have obtained,
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only from the condition of absence of the anomaly up to the second order, the existence of a
Lie algebra g and the existence of a representation of this Lie algebra pertaining to the Higgs
fields.

In this paper, we consider the effect of including Dirac fermions. In this way we are
able to investigate a truly realistic model of gauge interactions of elementary particles and, in
particular, to see what are the restrictions on such a model determined by the cancellation of
all anomalies. The main results are the following ones.

(A) The cancellation of the anomaly in the second order of the perturbation theory brings new
relations on the numerical coefficients of the left- and right-handed components of the
interaction Lagrangian. More precisely, new group theoretical properties appear:

(i) The coefficients of the vectorial and pseudo-vectorial couplings can be organized as
two representations of the gauge algebra, ¢} and t;” witha,b,... = 1,...,r group
indices; the usual notations are £ and 7£.

(i1) The coefficients of the scalar and pseudo-scalar couplings can be organized as some
tensor operators.
Some of these relations have been obtained from different considerations in [6,22,26].
(iii)) Some conditions on the couplings of the Higgs fields appear if one imposes the
additional requirement that no finite renormalizations of degree greater than 4 are
allowed. This condition gives the usual expression for the Higgs potential [4, 13] for
the case of the standard model (SM).

(B) The cancellation of the anomaly in the third order of the perturbation theory gives,
essentially, the usual condition of cancellation of the axial anomaly:

Agpe = Tr (6317, 11}) — T (¢, {1, , 1.}) - (1.0.1)

This is the expression of the Adler—Bardeen—Bell-Jackiw anomaly [1,2,5,7,20-22,25,27].
So, we obtain the usual condition of cancellation of the axial anomaly from the rigorous causal
approach to renormalization theory.

The structure of the paper is the following. In the next section we define the model and
construct the interaction Lagrangian including Dirac fermions. Then in section 3 we outline
the general setting for the study of the renormalization theory, the general structure of Ward
identities and some facts about distribution splitting. In section 4 we construct the S-matrix up
to the second order of the perturbation theory. For the case without matter fields we reobtain the
results of [17]. Then we consider the coupling of Yang—Mills fields with Dirac fermions and, as
anticipated above, we obtain the group-theoretical information explained above. The complete
analysis of these relation—we refer especially to (4.1.6)—is not available in the literature in
full generality, at least to our knowledge; this subject deserves further investigation. We also
analyse the conservation of the BRST current in the second order of the perturbation theory. In
section 5 we go to the third order of the perturbation theory. We investigate the Dirac fermionic
sector and we obtain the new conditions on the fermionic representations from above. Finally
we particularize the formalism for the case of the SM with one generation of Dirac particles.

For the sake of clarity of the rather long and intricate analysis we adopt the mathematical
definition—theorem style of presenting various assertions and computations.

2. General description of the vector Bosons

2.1. Massive Yang—Mills fields

In [16] and [17] we have started from the following two facts:
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(1) a system of free zero-mass vector bosons can be described in a Hilbert space generated
from the vacuum €2 by applying the free fields A,,, u, u of zero mass and a factorization
procedure induced by a supercharge operator;

(2) asystem of free vector bosons of mass m > 0 can be described in a Hilbert space generated
from the vacuum €2 by applying the free fields A, u, i, ® of mass m and a factorization
procedure induced by a supercharge operator.

Here A, is a boson vector field, u and i are scalar Fermi fields and @ is a scalar boson
field; the fields u, u, ® are usually called ghost fields.

For the Yang-Mills model we somehow combine these two cases. We consider the
auxiliary Hilbert space H%{ generated from the vacuum 2 by applying the free fields
Agus Ug, g, o a = 1,...,r, where the first one has vector transformation properties
with respect to the Poincaré group and the others are scalars. In other words, every vector field
has three scalar partners. Alsou,, i, a=1,...,r arefermionand A,, ®,a=1,...,r
are boson fields.

We have two distinct possibilities for distinct indices a:

(I) Fields of type I correspond to an index a such that the vector field A} has non-zero mass
m,. In this case we suppose that all the other scalar partner fields u,, it,, P, have the
same mass M.

(IT) Fields of type II correspond to an index a such that the vector field A% has zero mass.
In this case we suppose that the scalar partner fields u,, i, also have zero mass but the
scalar field ®, can have a non-zero mass: m f > 0. It is convenient to use the compact

notation
m, for m, #0
= 2.1.1
a { mH for m, =0. ( )
Then the following equations of motion describe the preceding construction:
O+mdua(x) =0 O+md)iia(x) =0 2.1.2)

@O+ m)H () =0  a=1,...,r

We also postulate the following canonical (anti)commutation relations:
[Aau,(x)v Abv(y)] = _Sabg/mel, (x — )’) x 1
{ua(x)aﬂb(y)} =5ame,,(X—y) x 1 (2.1.3)
[@4(x), Pp(¥)] = Sap Dz (x — y) x 1

(all other (anti)commutators are null).
In this Hilbert space we suppose, given a sesquilinear form (-, -) such that

A (0)" = Ay (x) g (x)" = U,y (x)

fiq(x)" = ity (x) D, (x)" = B, (x). (2.1.4)

The ghost degree is £1 for the fields u,, #,,a =1, ..., r and O for the other fields.
One can define the BRST supercharge Q by

{qua} =0 {Qs ﬂa} = _i(auAg'i'macDa)

. . (2.1.5)
[0, AL] = i0"u, [0, ®,] =im,u, Va=1,...,r

and

0Q =0. (2.1.6)
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Then one can justify that the physical Hilbert space of the Yang—Mills system is a factor
space

i = H = Ker(Q)/Ran(Q). (2.1.7)

The sesquilinear form (-, -) induces a bona fide scalar product on the Hilbert factor space.
The factorization process leads to the following physical particle content of this model:

e For m, > 0 the fields AL, u,, ii,, ®, describe a particle of mass m, > 0 and spin
1; these are the so-called heavy bosons [17].

e For m, = 0 the fields AY, u,, i, describe a particle of mass 0 and helicity 1; the
typical example is the photon [16].

e For m, = 0 the fields ®, describe a scalar fields of mass mf ; these are the so-called
Higgs fields.

This framework is sufficient for the study of the SM of the electro-weak interactions:
indeed one takes r = 4 and considers that there are three fields of type I and one field of
type II. The scalar field appearing in the last case can be considered as the Higgs field.
To also include quantum chromodynamics one must consider that there is a third case:

(IIT) Fields of type ITI correspond to an index @ such that the vector field A% has zero mass and
the scalar partners u,, i, also have zero mass but the scalar field @, is absent.

In [24] and [14] the model is constructed somewhat differently: one eliminates the fields of
type II and includes a number of supplementary scalar bosonic fields ¢; of masses m; > 0.
In this framework one can consider for instance the very interesting Higgs—Kibble model in
which there are no zero-mass particles, so the adiabatic limit probably exists.

One can preserve the general framework with only two types of index if we consider that
in case II there are in fact three subcases (i.e. three types of index a for which m, = 0):

(ITa) in this case Agy, Ug, g, Py # O;

(IIb) in this case ¢, = 0;

(IIc) in this case Agy, Uq, Uy = 0.

One must modify appropriately the canonical (anti-) commutation relations (2.1.3) to
avoid contradiction for some values of the indices. One has some freedom of notation: for
instance, one can eliminate case (Ila) if one includes the first three fields in case (IIb) and the
last one in case (IIc). The relations (2.1.5) are not affected in this way.

Let us consider the set of Wick monomials W constructed from the free fields A%, u,, i,
and ®, for all indices a = 1,...,r; we define the BRST operator dp : W — W as the
(graded) commutator with the supercharge operator Q. Then one can prove easily that

dj =0. (2.1.8)

The class of observables on the factor space is defined as follows: an operator O:
Hf{’f\;f — Hf{’f\;[’ induces a well defined operator [ O] on the factor space Ker(Q)/Im (Q) ~ F,,
if and only if it verifies dp O |ker(g) = 0. Because of the relation (2.1.8) not all operators
verifying the condition (2.1) are interesting. In fact, the operators of the type dp O induce a
null operator on the factor space; explicitly, we have

[dpO] = 0. 2.1.9)

The canonical dimension w (W) of a certain Wick monomial is defined according to the
usual prescription. By definition, a Wick polynomial is a sum of Wick monomials.

We will construct a perturbation theory d la Epstein—Glaser using this set of free fields and
imposing the usual axioms of causality, unitarity and relativistic invariance on the chronological
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products T (x1, ..., X,). Moreover, we want the result to factorize to the physical Hilbert space
in the adiabatic limit. This amounts to

limdQ/ dxy - dx, ge(xp) -+ - e ()T (X1, .., X)) |Ker(o) = 0 vn>1. (2.1.10)
e\0 (R4)xn

If this condition if fulfilled, then the chronological and the antichronological products do
factorize to the physical Hilbert space and they give a perturbation theory verifying causality,
unitarity and relativistic invariance.

One may raise at this point the rather serious objection that the adiabatic limit probably does
not exist. One way to ‘cure’ this problem is to replace the condition of factorization (2.1.10)
by the ‘infinitesimal’ version postulated in [3—13], namely

N 0
dQT(xl,...,xn)=1Zax—MTlﬂ(x1,...,xn) (2.1.11)

=1 9
for some auxiliary chronological products T,”(xl, ..., Xy, l = 1,...,n, which must be

determined recurringly, together with the standard chronological products, and to construct
the S-matrix S(g) for a test function g, that is without performing the adiabatic limit g N\ 1.

However, this point of view is not without problems. Indeed, if one imposes (2.1.11)
instead of (2.1.10), then the S-matrix so constructed will not factorize to the physical space
Ker(Q)/Im (Q), which raises the question of its physical relevance. To this one must add
the rather unpleasant fact that one abandons the consistency condition (2.1.10), which has a
direct physical relevance: the possibility of constructing an S-matrix in the physical space
Ker(Q)/Im (Q)) for an independent postulate (2.1.11). On the other hand, the rather close
connection between (2.1.10) and (2.1.11) suggests that there must exist a common ‘cure’
for both types of problem. That is, if one can find a reasonable solution of the adiabatic
limit problem, then it is reasonable to conjecture that one will be able to strengthen the
mathematical status of (2.1.10) and, eventually, prove its equivalence with (2.1.11). In this
case the consistency condition can be also written in the following form:

dQ/ ) dxp--odxy ge(x1) -+ 8e(x)T (X1, ..., Xp)lker(0) = O(€) Vn > 1 (2.1.12)
®)

in the sense of the infinitesimal calculus of Dieudonné. In what follows, the interpretation
of the right-hand side of the preceding relations will be ‘an integrated divergence’. In other
words, to avoid various problems we will use in fact the formal adiabatic limit condition given
by (2.1.11). A more detailed discussion on this point can be found in [17].

By a trivial Lagrangian we mean a Wick expression of the type

L(x) = dyN(x) +iaxiﬂL“(x) (2.1.13)

with L(x) and L*(x) some Wick polynomials. The first term in the previous formula gives
zero by factorization to the physical Hilbert space (according to a previous discussion) and
the second one also gives zero in the adiabatic limit; this justifies the elimination of such an
expression from the first-order chronological product T (x).

If one completely exploits the condition of gauge invariance in the first order of perturbation
theory, obtaining the generic form of the Yang—Mills interaction of spin-one bosons up
to a trivial Lagrangian. We assume the summation convention of the dummy indices
a,b,...=1,...,r. The result from [17] is:

Theorem 2.1. Let us consider the operator T (x) defined on H%{ as a Lorentz-invariant Wick
polynomial in A% (x), u.(x), fi,(x), ®,(x) such that every term has canonical dimension
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three or four. If it verifies the formal adiabatic limit condition then it has, up to a trivial
Lagrangian, the following form:
T™M) = fapel: A () Apy ()" AL () : = 1 Al (Dup (x)8, i (x) ]

+fopels Pa(x)0, @p(x)AX (x) : —myp @ Py (x)Ap, (X) A (x) :

+my, @ Qg (x)itp(X)uc(x) 1]

+fape t Pa(X)@p(X) P (X) : +8abed * Pa(X)Pp(X) P (x)Pg(x) 1. (2.1.14)

The various constants from the preceding expression are constrained by the following
conditions:

o the expressions fup. are completely antisymmetric

Jabe = = foac = = facv (2.1.15)
and verify

(mg —myp) fape =0 iff mc=0 Ya,b=1,...,r (2.1.16)

o the expressions f,, . are antisymmetric in the indices a and b:

Five == Fac 2.1.17)
and verify the relation
m? —mihf, =0 iff mg=mp=m.=0 Va,b=1,...,r (2.1.18)
and are connected to fupe by

Sabeme = flpma — flpamp Ya,b,c=1,...,r (2.1.19)

o the expressions f,, . remain undetermined for m, = m, = m. = 0 and for the opposite
case are given by

i l ! * *
fabe = gcfabc[(ma)2 — (mp)* —m} +mj) (2.1.20)

for me 7é 0;
o the expressions gupcq are non-zero only for m, = mp = m. = my = 0 and in this case
they are completely symmetric.

Remark 2.2. The presence of indices of type (IIb) and (Ilc) is taken into account by requiring
that the constants from 7 (x) are null if one of the indices a, b, ¢ takes such values. One can
see that this does not affect the equations from the statement of the theorem.

We also have:
Corollary 2.3. In the condition of the preceding theorem, one has
doT(x) =19, T"(x) (2.1.21)
where
TH = fape G ugApy FJ* 2 —% Suqupdtie ) + flp.(mg t AF®pue t + 1 D,0M Dpu, 7). (2.1.22)
The expression 7 (x) from the preceding theorem verifies the unitarity condition
Tx)" =Tk

if and only if the constants fupe, f

"
b and
condition

e have real values; it also verifies the causality

[T(x), T(y»)]=0 Vx,y e R* st. (x—y)? <0.

We close this subsection with some remarks.
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Remark 2.4. One can see that the necessity of using ghost fields stems from the fact that it
seems to be impossible to construct the interaction Lagrangian without them. However, from
a fundamental point of view, one can consider them only as some catalysts [14] and hope that
one will be able to reformulate the whole theory without them.

Remark 2.5. In the first-order analysis one can also use instead of the formal adiabatic limit
condition (2.1.11) the more physical condition (2.1.10) because no problems connected with
the adiabatic limit exist in this case. However, as noted in [13], the condition does essentially
eliminate the tri-linear terms and one loses much of the information of the preceding theorem.
This is another indication that one should work with the formal adiabatic limit condition.

Remark 2.6. In [8] one can find a discussion showing that trivial Lagrangians do not produce
effects in the higher orders of perturbation theory.

2.2. Yang—Mills fields coupled to matter

We study here the possibility of coupling Yang—Mills fields to ‘matter’. We suppose that we are
given the Hilbert space of ‘matter’ Hmaer, Which is usually also a Fock space. Then the coupled
system is described in the tensor product Hilbert space Fym ® Hmater- One can describe this
Fock space considering 7:{%1\;[’ = H%}f ® Hmater With the corresponding supercharge operator
and forming the quotient Ker(Q)/Im (Q). We will consider here that the ‘matter’ is formed
from Dirac fermions only.

First, we generalize theorem 2.1:

Theorem 2.7. Let us consider the operator T (x) defined on ﬂggg\,{' which is a Lorentz-invariant
Wick polynomial in A% (x), u,(x) ,ii,(x) , ®,(x) and the matter fields such that every term
has canonical dimension three or four. Then T (x) verifies the formal adiabatic limit condition
if and only if, up to a trivial Lagrangian, it has the following form:

1
T(x) = T™(@) + AL ) jup (¥) + Y —Da(x),j1 () + Y Pa(x) a(x) + Trnater ().
m,#0 "9 me=0

2.2.1)

Here TYM(x) has been defined in theorem 2.1, j,,, and j, are Lorentz covariant currents built
only from the matter fields with @ (ja,) = 1,2, 3 and Thauer (x) contains only the matter fields.
Moreover the following conservation law should be valid:

ujl(x)=0 Vm, = 0. 2.2.2)
The expression for T (x) verifies the unitarity requirement if and only if we have
P =jRx) Ya=1,...,r Ja) T = ju(x) Vm, =0 (2.2.3)

and verifies the causality condition if and only if

L), jE)]1=0 x—y)?<0 Va,b=1,...,r (2.2.4)
[a (), jo ()] =0 (x—y)? <0 Vm,=my=0 (2.2.5)
Lk (), jp ()] =0 (x—y)?><0 Vm,=0. (2.2.6)

Proof. Beside the terms considered in theorem 2.1 we have to include terms containing
explicitly the Dirac fermions. Lorentz covariance and power counting limit these terms to
Tinaer (x) and

Tnatier (X) = A} (X) jap (x) + Pa (%) ja (%) (2.2.7)
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with jg,. (ju) a Lorentz covariant (invariant) operator. Proceeding in the same way as for the
proof of theorem 2.1, we obtain a supplementary restriction, namely

Mg jg = 0, jl Ya=1,...,r (2.2.8)
In other words, for m, = 0 we obtain (2.2.2) and for m, # 0 we obtain
: I, .
Ja=—0uj;" (2.2.9)
My

The expression from the statement emerges. The other assertions are straightforward,
although rather tedious to verify. g

It is clear that if the Hilbert space of the matter fields is also a Fock space and the currents
are build from Wick monomials, then the commutation relations (2.2.6) are always verified.

Corollary 2.8. The following formula is true:
ad
doT(x) =i—T*" 2.2.10
0T (x) =iz T"(x) (22.10)

where T"(x) is obtained by adding to the corresponding expression from the pure Yang—Mills
case—see (2.1.22)—the following contribution due to the presence of matter:

Tﬁdtter(x) = ug (%) jj (x). 2.2.11)

Now we obtain in detail the structure of the interaction Lagrangian in the following two
propositions. We have:

Proposition 2.9. Suppose that the Dirac fermions generating Hmayer are ¥a of masses
My >0,A=1,...,N. Then the generic forms of the currents from the preceding theorem
are

JE) = A t) sy Y (x)  + : YaX)t) ay " vs¥p(x) : (22.12)

and

Ja () = YA () (S ap¥p(X) 1+ Ya(X) (L) apys¥p(x) i . (2.2.13)

The causality conditions from theorem 2.7 are fulfilled and the hermiticity conditions are
equivalent to the fact that the complex N x N matrices t,, 1), o, a = 1, ..., r are Hermitian
ands), a =1, ..., r anti-Hermitian.

The contributions with (without) the matrix ys is called axial (vectorial) current. Let us
define the mass matrix by

MABE(SA,BMA VA,le,,N (2214)
Then we have:

Proposition 2.10. The following mass relations are true:

So= M1l sp=——(M.}  Vm,£0 (22.15)

a md

(M, 1,] =0 M.} =0 Vim, = 0. (2.2.16)

In particular, the matrices t,, Ym, = 0, can be exhibited in a block diagonal structure
(eventually after a relabelling of the Dirac fields) and the masses corresponding to the same
block must be equal.

Proof. It is easy to show that the conservation law (2.2.8) is equivalent to the two relations
from the statement. ]
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Corollary 2.11. Let us define
15 =1, +e€t, S5 =5, +e€s, Ya=1,...,r (2.2.17)
where € = %. Then, the relations (2.2.15) and (2.2.16) are equivalent to

i
56 =— (Mt —t,°M) Ym, #0 (2.2.18)
Mt =t M Ym, =0 (2.2.19)
and the hermiticity conditions are equivalent to
) =t ) =5, Ya=1,...,r e€==. (2.2.20)

3. Perturbation theory

3.1. The general framework

We give here the basic ideas of a multi-Lagrangian perturbation theory following [15] and [18].
One can argue that the S-matrix is a formal series of operator valued distributions:

oo in
S@=1+) — / dxy e dxy Ty (1 o Xa) 85 (1) - 85, () (3.1.1)
=l n:. Jrn
where g = ( gj (x))j:lw p s amulti-valued tempered test function in the Minkowski space R*
that switches the interaction and 7}, _; (x1, ..., x,) are operator-valued distributions acting

in the Fock space of some collection of free fields with a common dense domain of definition
Dy. These operator-valued distributions are called chronological products and verify some
properties called Bogoliubov axioms. We note that there is a canonical association of the point
x; and the index j;. One starts from a set of interaction Lagrangians T;(x), j =1, ..., P and
tries to construct the whole series T, . ;.,n > 2.

We outline briefly the set of axioms imposed on the chronological products 7, . ;. ; we do
not give the explicit formula because they are well known in the literature and can be found
in the references quoted above.

o Symmetry. This axiom describes the behaviour of the chronological products with respect
to the permutation of the couples (x;, j;).

e Poincaré invariance. This axiom describes the behaviour of the chronological products
with respect to the action of the Poincaré group in the Fock space of the system. Essentially
it is a tensorial covariance condition.

e Causality. This describes factorization properties of the chronological products for
causally separated arguments. This seems to be the central axiom of this axiomatic
approach; it plays a major role in other axiomatic schemes as well.

e Unitarity. This axiom is considered in the sense of formal series.

A renormalization theory is the possibility to construct such an S-matrix starting from
the first-order terms: T;(x), j =1, ..., P, which are linearly independent Wick polynomials
called interaction Lagrangians, which should verify the corresponding axioms expressing the
behaviour with respect to Poincaré transformations, Hermitian conjugation and commutation
properties for spacelike separated arguments.

The case of a single Lagrangian corresponds to a single coupling constant, thatis P = 1 and
in that case the chronological products will be operators 7 (X) without any indices. However,
it is more convenient to consider that the interaction Lagrangian is given by the sum

T(x) =) c;Ti(x) (3.1.2)
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with ¢; some real constants. In this case, the chronological products of the theory are

T(X)=> ¢j...c;Tj...;,(X). (3.1.3)
It can be shown that that one must consider the given interaction Lagrangians 7 (x) to
be all Wick monomials of canonical dimension w; < 4 (j = 1,..., P) acting in the Fock

space of the system. Because the Fock space is generated by some free relativistic fields acting
on the vacuum €2 it is easy to see that there are always covariance properties with respect to
Poincaré transformations.

If there are non-Hermitian free fields acting in the Fock space, we have in general

Ti(x)" = Tj(x) (3.1.4)
where j — j* is a bijective map of the numbers 1,2, ..., P.

If there are Fermi or ghost fields acting in the Fock space, the causality property is in
general

T, (x) T}, (x2) = (=) T}, (x2) T, (x1) Vxi ~ xs. (3.1.5)
Here o; is the number of Fermi and ghost field factors in the Wick monomial 75; if o is
even (odd) we call the index j even (odd). One has to keep track of these signs in the symmetry

axiom for the chronological products.
It is convenient to also let the index j have the value zero and we put by definition

Ty=1. (3.1.6)
Moreover, we define a new sum operation of two indices j;, j, = 1,..., P; this

summation is denoted by + but should not be confused with the ordinary sum. By definition
we have

Tjsj(x)=c:T;x)T;,(x) : 3.1.7)
for some positive constant c. We define componentwise the summation for n-tuples J =
{j1,- .-, ju}- The new summation is non-commutative if Fermi or ghost fields are present.

We will use the notation

w; EZw, (3.1.8)

jeJ

and we call it the canonical dimension of T;(X).

Let us denote by w(d) the order of singularity of the numerical distribution d. We use
the definition from [23] although one can also use the scaling degree introduced by Steinmann
(see [10]).

Then we add a new axiom, namely the following Wick expansion property of the
chronological products is valid:

T)(X) = Z ety (X)W (X) (3.1.9)
K+L=J
where (a) 7x (X) are numerical distributions (the renormalized Feynman amplitudes), (b) the
degree of singularity is restricted by the relation
w(ty) < wg —4n —1) (3.1.10)

(c) € is the sign originating from permutation of Fermi fields and (d) we have introduced the
notation

Wi;(X)=:Tj(x1) - Tj,(xn) <. 3.1.11)
Let us notice that from (3.1.9) we have
t;(X) =(Q, T;(X)2). (3.1.12)



Standard model and generalizations II 5439

In particular, these numerical distributions are Poincaré covariant; translation invariance
implies that they are in fact distributions in m = 4(|X| — 1) variables.

The recursive construction assumes that we have the expressions 7;(X) for | X| < n — 1
verifying all the properties and tries to construct them for X = n. The basic object is the
commutator function:

Dj],...,j;l(-xl’"‘7xn71;xn) EA/JI ,,,,, j”(-xlv”-yxnfl;xn)_R;l ,,,,, jn(-xlv”-»xnfl;xn)
(3.1.13)

where

/ -
Al =) DT () T (X2) (3.1.14)
and

I -
Ry i) = ) CDPITL (X0 Ty, () (3.1.15)

and the sums " run over the partitions verifying X, # ¢, x, € X.
The commutator function can be proved to be Poincaré covariant and to have causal support

i.e.supp(Dj, ;. (X1,..., Xp—1; X)) C T'*(x,) UT ™ (x,,) where we use standard notations:
) = {(x1,....x) € ®RY'x; —x, e VEVi=1,...,n—1}. (3.1.16)
Moreover, a formula similar to (3.1.9) is true:
D;(X)= Y edg(X)WL(X) (3.1.17)
K+L=J
where dk (X) are numerical distributions; in analogy to (3.1.12) we have
d;(X) = (R, D;(X)Q). (3.1.18)

It follows that the numerical distributions d; (X) have causal support i.e. supp(d, (X)) C

't (x,) U~ (x,) and are SL(2, C)-invariant. Moreover, their degree of singularity is restricted
by

w(dg) <Kwg —4n—1) (3.1.19)
(this is the content of the power counting theorem). One knows that there exists a causal
splitting

dy=a;—ry supp(ay) C T (x,) supp(ry) C I'"(x,)  (3.1.20)
which is also SL(2, C)-invariant and such that the order of the singularity is preserved. So,
there exists a SL (2, C)-covariant causal splitting:

D;(X) = A;(X) — R;(X) IX|=n (3.1.21)
with supp(Aj, . j, (X1, ..., Xa—15X2)) C I'*(x,) and supp(R;, . ;. (X1,..., X—13 %)) C
' (x,).
Let us define
T/(X) = A;(X) — A (X) = R;(X) — R, (X). (3.1.22)

Then these expressions satisfy the SL(2, C)-covariance, and causality axioms. One can also
fix unitarity and symmetry.

We end this subsection with an important remark. Let us consider some general Wick
polynomials

Ai(x)zzcijrj(x) i=1,2,.... (3.1.23)
j
Then we can define the chronological products
T(AT). oy A ) = D iy €3, Ty (10 X, (3.1.24)
7
One can find in [10] a system of axioms for the expressions 7 (A} (xy), ..., A,(x,)) which

is equivalent to the Bogoliubov set of axioms.
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3.2. Ward identities

As we said in section 2.1 the problem is to construct the whole series T (X) such that one has
the gauge invariance condition in all orders of the perturbation theory at the same time as the
other Bogoliubov axioms.

In general we have something more general than relation (3.1.2)

T(x) =) c;Ti(x) THx) =Y cTi(x) (3.2.1)
with ¢; and cj.‘ some real constants; then we will have something more general than (3.1.3):
TX) =) ¢ ¢ T X TXO=) cjdio T (0. (322)
In particular, the following conventions hold:
TW =1 T @) =0 T'(X)=0 for x; ¢ X. (3.2.3)
Then the gauge invariance condition (2.1.11) can be written more compactly as follows:
. a "
doT(X) = 12 WT, (X). (3.2.4)

We suppose that these relations are true up to order | X| < n— 1 and investigate the possible
obstructions in order n. The procedure used in [11,12] and [16, 17] amounts to the following.
Let us define the operator distributions D (X) and Dl" (X) in analogy to the relations (3.2.2).
Then it can be proved that we have

doD(X) —IZ 2D (X) IX| = n. (3.2.5)
l

We can express this condltlon in terms of numerical distributions. According to the
relation (3.1.9) and the Wick theorem we must have Wick expansions for the two expressions
appearing in the preceding equation:

D(X):Zd](X)WJ(X) D,’L(X):ZdﬁJ(X)WJ(X). (3.2.6)
J J

The numerical distributions appearing in these relations have the following properties:
they are Poincaré covariant, they have causal support and the order of singularity can be
restricted according to the power counting formula:

w(d) +w; <4 od)+w; <4 3.2.7)

according to the power counting theorem.
One can rewrite (3.2.6) as follows:

DX)=) diOWi(X)  DI(X) =) di)OW5(X)+) dfXOWi(X) (3.28)

where d; and d!* can be taken to be linear independent over the vector space of smooth functions
with polynomial bounded increase at infinity Oy,. The index i takes a finite number of values
and the expressions W;(X), W;.;(X), Wl“l (X) are Wick polynomials.

Using the linear independence one obtains from (3.2.5) a set of identities among Wick
polynomials of the type

doW; =--- (3.2.9)
where the left-hand side can be computed as follows. First one makes the derivation operations
in the right-hand side of (3.2.5). It is quite possible that relations of the type

d;‘,(X) Z c;d;(X) (3.2.10)
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are valid for some numbers c;. Then one has to rearrange the expression in the right-hand side
of (3.2.5) and the right-hand side of (3.2.9) emerges as the coefficient of d; (X).

Identities of the type (3.2.10) are called Ward—Takahashi (or Slavnov—Taylor identities).
In [12] these relations are called the C-g identities. They have been extensively studied in [9].
In lower orders of perturbation theory one can check them by explicit computation.

One now can interpret the renormalization theory as a distribution-splitting preservation
of the Ward identities. Suppose that one can find a causal splitting d; = d*¥ — d™ of the set of
causal distributions d; (X) such that we preserve Poincaré covariance, the order of singularity
and the identities (3.2.10); i.e., we also have

d 1 yadv(ret) adv(ret)
W(dl;i)a Vi) (x) = ;c,dj (X). (3.2.11)

Then we define the expressions A(X) and Af (X) by making into the formule (3.2.8) the
substitutions d — d?%. If we use now the relations (3.2.9) we easily obtain

LI
doA(X) = iZ ax—MA;‘(X) 1X| = n. (3.2.12)
=1 l

The similar property for the chronological products of order n easily follows. So, the
obstructions to the gauge invariance in order n can appear in the process of causally splitting
the relations (3.2.10) i.e. we might have instead of (3.2.11)

9 v
G D00 =D eI X = p ) (32.13)
J
where the expression in the right-hand side p(X)—called the anomaly—must have the form
p(X) = p(3)8(X) (3.2.14)
where p(0) is a Lorentz covariant polynomial in the partial derivative operators and
3(X) =08(x1 —xp) -+ - 8(xp1 — Xp). (3.2.15)

Also, if the distribution appearing in (3.2.10) has some global symmetry property
(symmetry with respect to some global group of symmetries, (anti-) symmetry with respect to
some indices etc) one can usually perform the distribution splitting such that these properties
are also preserved. Moreover, we have a limitation on the degree of the polynomial p(9):

deg(p) < w (3.2.16)

where w is the order of singularity of the left-hand side of (3.2.13). There easily follows a
case where there are no anomalies, namely when a)(dl.“ ) < —2, Vu. Let us note in closing
this section that the form of a anomaly can be simplified by redefinitions of the distributions
a; and al’f ;> we have the freedom of adding expressions of the type p(9)5(X).

4. Second-order perturbation theory

4.1. Yang—Mills coupled to matter

We follow [17], where the pure Yang—Mills case was studied, emphasizing the possible
appearance of anomalies in a more explicit way.
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Theorem 4.1. Suppose that the distribution T (x, y) verifies (3.1.10). Then it verifies the
formal adiabatic limit condition if and only if the following identities are verified:

Save faee + fodc Jaee + faac foee =0 a,b,de=1,....r (4.1.1)
Tacaleer = LievFrea = — fabe Fiee a,bd,e=1,....r (4.1.2)
fc/ab clile + c,db L{;e + L{e‘b c,:la =0 iff mp,=0 4.1.3)
Svedef fipa&eder =0 a,b,d,e, f=1,...,r (4.1.4)
[, 6] = ifupet® €=+ ab=1,....r 4.1.5)
tosy —sptt =1f)..5" a,b=1,...,r. (4.1.6)

Here S _is the symmetrization operator in the indices which are explicitly exhibited.
Proof. (i) According to the ideas from section 3.2, we compute the commutator
D(xy, x2) = [T (x1), T (x2)] 4.1.7)

using the Wick theorem and identify a set of linearly independent distributions d; as in (3.2.8);
these are distributions in one variable & = x; — x, due to translation invariance. Direct
inspection of the expressions (2.1.14) and (2.2.1) produces a list of such distributions A with
causal support. Using Feynman graph terminology we have distributions associated with tree
and one-, two- and three-loop graphs. All these distributions can be written as sum of the
positive (negative) frequency parts:

A=A+ A, (4.1.8)
(a) From tree graphs:
D,, 9, Dy 0,05 Dy
! " 4.1.9)

Su(x) = @iy - 9+ M)Dy(x)
where D,, is the Pauli—Villars commutator distribution of causal support corresponding to
mass m (see [17] for the definition) and S, is the similar distribution for a Dirac field of mass
M.
(b) From one-loop graphs we obtain new distributions with causal support:

DY, =+DSY ()DL (x)

my,ny

(€S)] — + +
Dml,mz;p = :I:Dl(nI)aPDl(nz) - (1 <~ 2)
apol,mz
(*) — + + + +
Dml,mz;pa = i[apDr(nl)aoD;(nz) - D,(ﬂl)apaaD,(nz)] + (1 <> 2)

L 4.1.10)
Py (o) = £Te [S),) (F2) Sy, ()] (
Py, () = £ T [S4) (F0)7, Sy ()]

PA%?MW (x) = £ Tr [y, Sy (F0) 6 Sy ()]

H _ +) (&)
2:m,M = :l:Dr(n )SM .

We note that in the definition of Dfrf?mz; , We have taken the antisymmetric part in the
masses because the symmetric part has been considered separately: it is the third distribution
from the list.

(c) From two-loop graphs:

Dy my = Dy DL DY

BZDM],mz,WL3

D,y iy = 05Dy 8" D2 DY) @.1.11)
Pn&:ifz’ll.Mz = iDV(ﬂi) Pft/fil,)Mz

P(i) = iD(i)P(i)

m; My, My; po m M, M;po*
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(d) From three-loop graphs:
D (x)=+DS DS DS DS (4.1.12)

mj,my,ms3,my

The distributions P are obtained from contractions of two vectorial currents. Let us note
that one also obtains distributions of the type Q- from contractions of two axial currents. These
distributions can be obtained directly from the correspondmg distributions P by conveniently
inserting two ys factors. However, the distributions of the type Q- can be expressed in terms
of P if one uses the identity

ysSiys = =S (4.1.13)

The distributions following from contractions of an axial and a vectorial current are null
because the traces so obtained are null. Next, we note that in the other commutators

D (x1, x2) = [T" (x1), T (x2)] Dy (x1, x2) = [T (x1), T*(x2)] = —Df (x2, x1) (4.1.14)
the distributions gu,\dlA from (3.2.8) can be of the following type
9Dy YuSm ) — D,y oy v Poty My Put, v (4.1.15)
and the distributions of the type d; can be of the type

Dy, 9,Dy, Dy, Dy - (4.1.16)

Here the various parameters m, M, ... are the masses appearing in the theory. If we
consider distinct combinations of masses and indices we obtain a linear independent set of
distributions.

Let us also give for further use the orders of singularity of the distributions listed above.
We have

CU(Dm) =-2 w(Dml,mg) =0 w(Dml,mz;p) =-1
w(Dml,mz;pa) = 2 w(PMl,Mz) = 2

w(PMl,Mz;p) =1 w(PMl,Mzgpa) =2 (4117)
w(Pm:Ml,Mz) =4 w(Pm;Ml,Mz;po‘) =4

w(EmM) =1 w(Dml,mz,mg) =2

w(Dml,mz;mg) =4 w(Dml,mz,m3,m4) =4.

Some of these orders of singularity are in fact lower than naive power counting suggests.
All these distributions have causal support so we have causal decompositions

A =AY — AT (4.1.18)

We have assumed that the causal splitting is preserving Lorentz covariance and the order
of singularity. If the order of singularity is less O then this causal decomposition is unique (see
the end of the preceding section). This is the case for the distributions D,,, Sy and Dy, p-

(ii) Now we consider the Ward identities (3.2.10). By direct inspection one finds out that
they are

(3*+m*)D, =0 (4.1.19)
(iy -0 — M)Sy = Sy (iy- 9 —M) =0 (4.1.20)
" Dy i = (m3 — m3) Dy, m, (4.1.21)
" Doy v = (m3 — m3) Dy, i (4.1.22)
0" Py, ysp = 1(My — Ma) Py, (4.1.23)

0" Py, My = 1(My — M2) Pagy v (4.1.24)
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Now we analyse possible anomalies resulting after the causal splitting procedure. It is
well known that the first two relations (4.1.19) and (4.1.20) indeed produce anomalies: for the
(unique) causal splitting considered above one obtains

(8% + m?) DAV = § (4.1.25)
(1)/ L9 — M)S;a\;lv(rel) — Sﬁ;v(m)(iy- g —M) - —$. (4126)

One can prove more than that: even if we modify these splitting with arbitrary local
polynomial terms the anomalies do not disappear.

Next we consider (4.1.22); inspecting the orders we can have the following generic form
of the anomaly:

py(3) = 19, + ¢30,0%. (4.1.27)
We can eliminate this anomaly if we make the redefinition

DY — DM 4+ (C1gu +€30,,)8. (4.1.28)

mp,ma; v mip,my; Ly

The case (4.1.24) can be treated in a similar way and the anomaly is also eliminated.
The Ward identity (4.1.21) is non-trivial only for m; # m,. We have already noticed that
there exists a unique causal decomposition preserving Lorentz covariance and the order of
singularity of D,,, ,;.; then we can define

1
d d
Dy, = v m%a“DfnﬁmZ;M (4.1.29)
and the relation (4.1.21) is preserved; moreover the order of singularity is preserved:
w(Dfndlv,mz) = w(Dz’ld]‘:mz;p) +1=0.

The Ward identity (4.1.23) is non-trivial only for M| # M, and it has the generic form
p(d) = co + c20°. (4.1.30)

If we make the redefinitions
Co

—— 4.1.31
M, ( )

Pf’;fdl‘,/Mzut - P/?’;i]‘jMz://— + 628“8 P/‘;l’ldl\jMz - P/"‘ildl\,,Mz +i
the anomaly is eliminated.

It is interesting to summarize the preceding argument by saying that the anomalies are
produced only by the distributions associated with tree graphs.

(iii) It follows that we can describe the structure of the terms from Dl“ (x1, x2) which can
produce anomalies. It is sufficient to consider / = 1 and notice that the other part doubles the
value of the anomaly (because of obvious symmetry properties). We have

2

0
Di(x1,x) = a_Dmf(xl —x2)Te(x1, x2) + Dy (x1 — x2)TL (x1, x2)

Xip xll’-ax{)
9 2
+—— Dy (x1 = X2) T (X1, X2) + —————5 Dz (X1 — x2)T/” (x1, X2)
X1, 0x1,0x)
8
+ U )y Salx — x2) VY (x2)
a=1
8
+Y T @) Sa(x — X)W () s (4.1.32)

a=1
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where by --- we mean the contributions which do not produce anomalies because of the
argument of (ii). We have the following explicit expressions:

T.(x1, x2) = TM(xp, 02) + fape © ta(x1) AL (x1) jop (x2) :

T!(x1,x2) = T/ (x1, %0) — flo + Pa(x)up(x1) e (x2) : (4.1.33)
TP (x1, x2) = T (x1, x2) TP (x1, x2) = T/ (x1, x2)
where the expressions TM(x;,x2), T/"M(x1,x2) and T)™’(x1, x2), T2"™M7(x1, x0)

correspond to the pure Yang—Mills case and can be found in [17]. Also
UL ) =00 x) = UL (x) = UL (x) = (ta) patta () 5 (x)
UP ) =UL @) = UL (x) = UL (x) = —(t)) patta ()Y 5(x)¥s
ViY@ = Vi) = @) apy, ¥p ()AL (x)

V) = VP ) = ) anyers¥n ()AL (x) @139
VY () = VP (x) = () ap¥p (1) p(x)
VO (x) = Vi () = (5)) apys¥p (x) Py (x)
and
W) = W) = W () = W (x) = (t) aptta () Y5 (x)
W) = W) = W) = WP () = (1)) patta () yss(x)
T () = TP (0) = =) ca¥ c (1) ¥, Ap (x) “@135)
T () = T (0) = () ca e ()Y, vsAp (x) o
T () = TP (x) = —(sp)ca¥ (X)) p(x)
T (x) = T1" (x) = —(sp)ca¥ e () ys Dy (x).
The expression of the anomaly can be obtained in the generic form
Axy, x2) = 18(x; — x2)A(x)) (4.1.36)
where
A(xy) = Z [Tc(xl,xl) + T/ (x1,x1) — (%Tf) (x1,x1) — (887{)71{0 (xlaxl)]
+iZ[: UP )V @) +: T )W () 1. (4.1.37)

So, the expression of the anomaly A(x) obtains an extra term because of the presence of
the Dirac fermions:

A@) = A™M@) +1: ua (DAY OV 4 )Y (tas 1] + 11, 1] = i fabel) ap B (X) -
+H g () AY OV 4 ()Y, s ([tas ty] + [t 8] — i fapet) aB VB (x) -
+ 21t (V) Py ()Y 4 () ([as 561 — {15, 55} +1fL08) asWn (x) -
H 2 g () Py ()Y 4 ()5 ([a, s3] = (155 55} +1f s ) ap¥p(x) 1. (4.1.38)
(iv) We proceed now as in [17]. First we equate the expression A(x) to a coboundary
doL(x).
We obtain all the relations from [17] (and this explains the first four relations from the
statement). Moreover we obtain foralla, b =1,...,r

[ta, tp] + (1), t5] = i fabete (ta, 1,1+ (1), tp] = i fupet,
! !

4.1.39
[tas sb] - {t;v S;} =—i c/basc‘ [tav Sl/;] - {t;7 sb} =-i chaSc ( )
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which are equivalent to the last two relations from the statement.

(v) From the preceding computations we can obtain the explicit expression for the
coboundary L(x): it coincides with the expression obtained for the pure Yang—Mills case:
L(x) = LYM(X) = %fcabfcde : Aav(x)Abv(x)Ag(x)As(x) :

_fc{dafcfeb : A“V(X)Az(x)cbd(x)cbe(-x) .

= Ghped + Palx) Dy (X) Py (x) De () : (4.1.40)
m;,;éO
where
1
; = Savde flap frge- 4.1.41
8abed 2mb bd fcab cde ( )

Let us also define
L*(x) = Z [T/ (x, x) + T (x, )] (4.1.42)

Again it coincides with the expression from the pure Yang-Mills case:

L*(x) = L™ (x) = = frab fede © ta(x) Apy(x) AL (X) AL (x)
—flap Flae : Pa0)up(x)Py(x) AL (x) : . (4.1.43)

cab

We consider now a canonical causal splitting A°(xy, x2) and A;"(x;, x2) given by
the expressions which are obtained from the corresponding commutators if we make the
substitutions A — A%, This indeed gives a causal splitting of D(xy, x;) and DI’L (x1, x2)
respectively. However the identity (3.2.12) is not fulfilled. If we define now the new causal

splitting
A(xy, x2) = A°(x1, x2) + 8(x; — x2)L(x1) (4.1.44)
Al (x1, x2) = A (%1, x2) + 8(x1 — x2) L (x1) o

then one can see that (3.2.12) becomes true. Moreover, in this way one can obtain in the
usual way the expression of the chronological products T (x1, x) and T,M (x1, x2) such that we
have (3.2.4) and all other properties, in particular symmetry. |

Remark 4.2. If we do not require that (3.1.10) is fulfilled, the relations (4.1.4) and (4.1.6)
acquire a weaker form.

The group-theoretical information contained in this theorem is:

(a) The expressions f,. are the structure constants of a Lie algebra g.

(b) The structure constants f,,. corresponding to m, = m;, = m, = 0 generate a Lie
subalgebra gy C g.
(c) The r x r (antisymmetric) matrices T,,a = 1, ..., r defined according to
Tbe = = fiey Ya,b,c=1,...,r (4.1.45)

are an r-dimensional representation of the Lie algebra g.
The representation T, exhibited in the statement of the theorem is nothing else but the
representation of the gauge algebra g in which the Higgs fields live.

(d) The relation (4.1.5) tells us that the matrices f; are representations of the Lie algebra g
and relation (4.1.6) shows that the matrices s, are some tensor operators with respect to
the couple of representations f;; of the Lie algebra g.
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So, we propose the following strategy of analysing the generalization of the SM described
in this paper: first one should find restrictions on the Lie algebra g from the relation (4.1.2), then
one takes a couple of representations ¢ of this Lie algebra and afterwards one determines the
matrices s from the relation (4.1.6) using ideas from the proof of the Wigner—Eckart theorem.
We mention that if one tries to substitute the formula (2.2.18) into the formula (4.1.6), as done
in [3], then we end up with some very complicated trilinear relations, which are extremely
difficult to analyse in the general case.

Next, we have a generalization of proposition 3.9 from [17]. By definition the Feynman
propagator and the Feynman antipropagator are

AF = A A = AT L AD A = AW A = AT A, (4.1.46)
Then we have:

Proposition 4.3. Suppose that that there is no contribution T\ mawer in the first-order
chronological product. Then, we have

T(x,y) = T"™“(x,y)
— fabe D (x = D Aay (D) F (X) jop (9) -
— 1 (X)0,up(x) jE(y) : +(x < ¥)]
d
— fave 5 Dy (& = P AT AL () jop () 2 =(x < ¥)]

— fape D (x = P @a ()8, Pp(x) jH(y) : —(x <> ¥)]
— Fape D (6 = M 9, D0 () Af (1) e () +H(x < y)]

0
~ Faveg i Do (& = ML @u@AL @) o)) - =(x < y)]

—2h) DE (x = Y[t Pa(x) A} (1) jou (¥) : +(x < )]

+higy Die (X = W)z Aape (¥ A} () je(3) © +(x < )]

+hie), Do (x = ) fia (X1t (x) jo () : +(x <> )]

+3h$). DL (x — M @) ®p(x) je(y) : +(x <> Y]

+48abea Diye (X = M2 @ () Pp(0) P (¥) e () : +(x < y)]

+1 AP)AL (D) T {[(t)ac () = WA VSt (x = )y ¥s() :
+(t) ac(t))cn U AV Sy, (X — V)Veys¥s(y) :

+(t) ac(ty)cn :JA(X)V;LSAIZC(X = WYevs¥r(y) :

+(t) ac W) 2 U AX)VuysSp. (X = V)V, ¥s(Y) i —(a@ < b, < p,x < y)]
+(ta) a8 (10) BA Py p1y:pp (X — )

+(t))aB(t}) BA Q,‘F,,AMB;W(x -}

+: Dy () Py () {[(sa)ac(Sp)cn 2 WA Sy, (x — M Yp(y) :
+(sp)ac (e« U a(®)ysSiy, (x — V) ys¥p(y) :

+(s4)ac(sp)cn ZWA(X)SAZC(X —Mys¥p(y) :

+(s0) ac(sp)cn = W A YsSh (X — VWp(y) 1 —(a < b, x < )]
+(sa) 48 (55) BA Pig, a1y &6 — ¥) + (50) a8 (5,)Ba Qy, yr, (X — ¥}

+ 1 AL@)PL(Y) < {[(t)ac(p)cn 2 VA VSt (6 — MYs(y) :
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—(p)acta)cs = Y a() Sy, (v — X)yuis(x) :

+(tp) ac(sp)es 2 Y A VuYsSiy. (X — M ys¥s(y) :

—(sp)ac())cp EA(y)VSSAIj[C O = 2)Yuys¥a(x) :

+(ta)ac(sp)c + Y A(X)VuSyy, (x — Yys¥s(y) :

—(sp)ac(ta)cs = U a(NYsSh (v — X)W (x) :

+(t)ac(sp)cB :EA(X)V/LSAP/}C(-X —Mys¥e(y) :

—(sp)ac)c U aYsSh (v = X)yu¥s () :

+(ta) a8 (56)BA Py, a1y (X — )

+(t1) 48 (55) BAQhr, ayen X — W] — [x < 1}

—Df (X =) 1 jau () jEO) :

—(ta) ac(ta)cBl: U AV Zh . 6 = VYY) 1 +(x < )]
=) ac ) el U A YuysZh v (8 = VY ys¥p(y) 1 +x < y)]
—(t)ac @) cBl: VA VU ES e (= V)Y ys¥s(y) 1 +(x < )]
— () acta)csl: Y a)Vuys T 4o (x = Y Yp(y) : +x < )]
8" [(t) A1) BA Py a1, bt X — )

+(t) aB ) BAD s by — V)]

+Dy (X = V) ¢ ja(X) (V) :

+(82) ac(Sa)cBl: YA 1y (¥ = MYB(Y) 1 +(x < ¥)]
+(s,)ac (DBl Ua@YsEa, e (8 — Mys¥s(Y) : +(x < )]
+(sa)ac () cal: Ua@)Zh 4 (6 = Vysvp(y)  +(x < y)]

+(s;) ac(Sa)cBl: Ua()YsZh 4 (x — V(D) : +(x < y)]. (4.1.47)
Here htglb)c = %(fb/camb + fa/cbma) Cll’ld ht(12b)c = fa,bcmb'

Let us note that the expressions (2.2.12) and (2.2.13) for the currents can be also written
as follows:

JEOO) = YR apy V() 1+ Yy (@) apy g (1) : (4.1.48)
and
Ja) =Y DG ABYEE) 1+ ) () apV g () (4.1.49)
where we have defined
l+eys
Vi) = ——va() e==+ (4.1.50)

and the components corresponding to the signs + (—) are called chiral components of the
currents.

4.2. The conservation of the BRST current

The expression

<K
Jhrst(X) = (@ - Ay +my®Py) 3 g 4.2.1)
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is called the BRST current. One can verify easily the conservation of the BRST current:
A jprst = 0. 4.2.2)
Formally, the BRST charge is given by
0= / d*x jorer (). (4.2.3)
R3

We want to investigate the conservation of this current in higher orders of perturbation
theory. We present here the analysis in the second order. First we have:

Proposition 4.4. The following relation is verified:

Ligrst (X1)s T(x2)] = Dy, (x1 — x2) AL (x1, x2) + 3" Dy, (x1 — X2) Bo(x1, x2)

+3” Dy, (x1 — x2) ALY (x1, X2) + 3" 0, Dy, (X1 — X2) BY (x1, X2) 4.2.4)
where
Ba(x1,x2) = b+ 8, AV (x1) Dy (0)ite (x2) = +mahs). s D (x1) Py (¥t (x2) :

M flpe t Ua(X1)p @ (x2) AL (x2) © —mghly. : g (1) Apy (x2) AL (x2) -

—m hG). ¢ g (X))t (x2)u e (x2)

=3y frry * taO) PN Pe(Y) =g = U (x1) jp (2) : (4.2.5)
and

Bﬁ(-xlv -x2) = fbca : avA;(xl)AZ(XZ)uc(XZ) : _mafbca : q)a(xl)Ag(XZ)uc(xZ) :
+fabc : ua(xl)Abv(XZ)F;p(XZ) : _fabc : Ma(xl)ub(XZ)apﬁc(XZ) :
+fpea T Ua(X1) Pp(x2)0” D (x2)

Hme fl, g (X)) @p(x2) AL (x2) 1+ ug (x1) P (x2) = (4.2.6)
The expressions for hg)b and h;zb)c have been given in the preceding proposition.

The computations are long but straightforward. Applying the procedures of the preceding
subsection we obtain from here:

Proposition 4.5. The expression
T (jgrsr(x1), T(x2)) = D,iu (x1 — x2) Al (x1, x2) + 3”D,5“ (x1 — x2) By (x1, x2)
+37 D) (x1 — x2) AL (x1, x2) + 049, Dy (x1 — x2) B (x1, X%2) 4.2.7)

is valid for the canonical chronological product.

We have the following result which can be interpreted as a conservation of the BRST
current in the second order of perturbation theory.

Theorem 4.6. There exists a finite renormalization such that one has the following
conservation law:

T Gl (o) T(x2)>=i(is(x1 —x2>) T"(x1) (42.8)
axl JBRSTLE: o] ' -

Proof. We start from the obvious relation

3
M—u[(jﬁ‘RST(xl), T(x)]=0 (4.2.9)
1
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and perform the canonical causal splitting using the expression of the commutator derived
above. If we proceed in analogy to the derivation of the consistency conditions for the second-
order chronological products we obtain

a .. . . 0 .
M—MT‘(]SRST(M), T(x2)) = —18x—u[6(x1 — )N (x1)] — i8(x1 — x2) A(x1) (4.2.10)
1 1
where
dBY
AG) =D | Baler, x0) = (5o ) G, ) 42.11)
a 1

and

N™(x) =) Bl (x1, x1). (42.12)
Now it is a matter of computation to prove that we have A = —9,, T#. If we perform the finite
renormalization T (jrer(X1), T (x2)) = T¢(jgrsr(X1), T (x2)) —i8(x1 —x2) [N*(x1) + T*(x)]
then we obtain the relation from the statement. O

Remark 4.7. If we perform the finite renormalization

T’ (prst(¥1), T (x2)) = T (Jgrsr (¥1), T (x2)) — 18 (x1 — x2) N* (x1)

then we obtain the relation

a ., . . 0
WT (]]QLRST(XI)» T (x2)) =18(x; — Xz)wT“()q). 4.2.13)

Using the method of appendix B of [10] (where the case of QED is investigated) we can
obtain from (4.2.8) that the BRST current is conserved if the coupling constant (a test function)
is constant in a neighbourhood of the point x.

5. Third-order gauge invariance

5.1. The derivation of the anomaly

In this section we will analyse the possible obstructions to factorization of the S-matrix in
the third order of the perturbation theory. In principle, there is no difference with respect to
the preceding section. Nevertheless, the details of distribution splitting are considerably more
complicated and the same is true for the whole combinatorial argument.

First we give a standard regularization procedure of the distributions appearing in the
lists (4.1.9)—(4.1.12). We choose m > 0 different from all masses of the model and write the
Pauli—Villars distribution for any mass as follows:

D, = Dmo + D™¢; .11
one can check that the order of singularity of D™ is
w(D™®) = —4. (5.1.2)

The decomposition (5.1.1) induces a similar decomposition for all distributions in the
lists (4.1.9)—(4.1.12): we have a sum of two pieces

A=A AT (5.1.3)
where

o(A%) = w(A) w(A™) = w(A) -2 (5.14)
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and the support properties of A” in the momentum space are more convenient. We have

A" (p) ~ 6(£po) f(p?) (5.1.5)

with supp(f) C {p*> > A?} for some parameter with mass significance 1 > 0 (for the
distributions A® (p) we can have in principle A = 0).
The main result is contained in the following theorem:

Theorem 5.1. Suppose that the distribution T (x1, X, x3) verifies the condition (3.1.10). Then
it verifies the formal adiabatic limit condition if and only if, beside the conditions from the
statement of theorem 2.1, we also have the following set of supplementary conditions:

Tr ({17, t5) = Tr (e, {1, . 1.7 }) (5.1.6)
fa/bcgl;fgh + f_;'bcg;)agh + fébcgl/mfh + fl:bcg;;afg =0. (5.1.7)
Proof. (i) As before, we will investigate the third-order commutators
D(x1, x2: x3) = [T (x3), T (x1, )] — [T (x1, x3), T (x2)] — [T (x2, x3), T (x1)] (5.1.8)
and
DY (xy, x2; x3) = [T (x3), Ty (x1, x2)] — [T} (x1, x3), T(x)] = [T (x2, x3), T} (x1)]

DE (x1, x2; x3) = [T (x3), TE(M, x2)] = [T (x1, x3), Tj(xz)] — [T} (x2, X3),Z(x1)] (5.1.9)
DY (x1, x2; x3) = [T} (x3), T (x1, x2)] = [Ty (x1, x3), T (x2)] — [ T3 (x2, x3), T (x1)].

All these operator-valued distributions have the causal support property.
(ii) We convene to denote generically by

AP (1 = x0) = [ (2, i (x1) ¥ (1) Q)

1

APy — x3) = [ [1Q. ¢ (x2) %, (x3) Q) (5.1.10)

J
A5 (s — xp) = [ [(92, ¥e(e3) i (1) Q)

k
the distributions appearing in the analysis of the second-order perturbation theory i.e. the
lists (4.1.9)—(4.1.12). They appear with these three combinations of arguments from various
Wick contractions in the preceding formule for the commutators. Here the fields ¢ (x),
Y (x2), x(x3)) are factors in the Wick monomials of T (x;), T (x;), T (x3) respectively. If
Fermi fields are present one has to take into account the signs induced by the permutation of
the non-commuting factors in defining the associated distributions A,

We have to investigate the types of numerical distribution with causal support which can
appear from the computation of the four commutators. These distributions will depend only
on two variables & = x; — x3, & = x; — x3 due to translation invariance. It convenient to
use again a graph theory terminology. We define a super-line to be the assemble of lines of
a Feynman graph connecting two vertices. Then the notions of super-tree and super-loop are
obvious and we have only such types of graph. We give the generic form of the distributions
associated with them.

(a) First we obtain some distributions containing a factor § from commutators containing
afactor §(x — y)L(x) or 6(x — y)L*(x). In this case we obtain distributions of the type

d(A)(x1, x2; x3) = 8(x1 — x2) A(xp — x3) (5.1.11)

and other permutations of the variables. Here the distribution A is one from the lists (4.1.9)—
(4.1.12).
(b) Next, from super-tree graphs we obtain three types of distribution.
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(b1) There exists a super-line between x; and x3 and a super-line between x, and x3. In
this case one obtains distributions of the form

diy(x1, X2 x3) = AEH(XZ - xz)A;)(JB —Xx1) — Aﬁf)(xz - x3)A§+)(x3 —X1)
+A7 (3 — X)) A1 (v — x3) — AT (22 — x3) Ag(x3 — x1). (5.1.12)

The causal support of this type of distribution can be checked if one derives alternative
formule. If

iy " (x1, %21 x3) = AFCY (3 — x) AT (g — x3) (5.1.13)
then we have from (4.1.46)
dgy(x1, X35 x3) = d§) (x1, X23 x3) — {3 (x1, X25 X3). (5.1.14)

Moreover, if one uses the expression of the third-order chronological product (3.1.22) one
can prove that the distribution of this type produces the Feynman propagator

df(x1, x2: x3) = A (x3 — x1) AT (X2 — x3). (5.1.15)
(b2) There exists a super-line between x; and x, and a super-line between x; and x3. In
this case one obtains distributions of the form
dery (1, %23 x3) = A (3 — x) AT (61 — x2) — A (x5 — x) AFY (1 — x2)
+A3T (x) — x2) Ag(xs — x1) — AS (x3 — X)) As(xy — x2). (5.1.16)

The causal support of this type of distribution can be also checked if one derives the
alternative formule. We define

diy " (1, 33 x3) = AT (6 — 1) AT (3 — ) (5.1.17)
and we have as before
doy (x1, %23 x3) = dif) (%1, X33 x3) — d{f) (x1, x5 x3). (5.1.18)

If one uses the expression of the third-order chronological product (3.1.22) one can prove
that the distribution of this type produces the Feynman propagator

df)(x1, x21x3) = Af (X — x2) A (x3 — x1). (5.1.19)

(b3) There exists a super-line between x; and x; and a super-line between x, and x3. In
this case one obtains distributions d ) (x, x2; x3) of the same form as in case (b2) if one makes
X1 <> X).

We will denote the distributions associated with super-tree graphs by d;) (A, A")(x1, x2; x3),
indicating explicitly the distributions in one variable A, A’ from the lists (4.1.9)—(4.1.12) in-
volved in the construction. One can verify that if the orders of singularity of these distributions
are w and o’ respectively, then

a)(d(,»)(A, A/)) =4+w+w. (5.1.20)

(c) We consider now graphs with a purely bosonic super-loop. One obtains the following
type of distribution:

da23)(x1, x23 X3) = AL (o — xz)[AY’)(xg - x3)A;_)(x3 —x1)
—A7 (2 = x3) AL (3 — x1)]
+A% (x5 — xl)[A§+)(x1 - xz)Ag_)(xz —x3)
—A7 @ = x) A 00— x)]
+A] (2 — 1) [AYY (3 — x) AT (31 — x2)
—A7 s —x) AP (- )]s (5.121)
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for a fermionic super-loop an overall —1 sign appears.
The causal support property can be checked by deriving two alternative formulz:

da23)(x1, x5 x3) = =AY (x — xz)[AYr)(xz — x3)A(2_) (x3 — x1)

—A7 (2 — x3) A (3 — x1)]

+AS (3 — x)[ A (x) — x2) AT (2 — x3)
—AT (1 = x) AP (2 — x3)]

+A 0 — x3)[ AT (3 — 1) AT (6 — x2)
—A7 (3 —x) AP (1 — x)]

= — A — ) [AY (o — 1) AT (3 — xp)

—A7 (o — x3) A5 (x5 — x)]

+AS (x5 — xl)[Agﬂ (x1 — xz)AY) (x2 — x3)
—AT (1 = x) A (2 — x3)]

+AT (x — x3)[ AT (x5 — 1) A (61 — x2)
—AT (3 —x) AP (61 — 1)) (5.1.22)

We denote suggestively this type of distribution by d(123)(A1, Az, Az)(x1, X2; x3) where
A;, i = 1,2, 3 are distributions from the lists (4.1.9)—-(4.1.12) and we have concerning the
order of singularity

a)(d(123)(A1, Az, A3)) = 4+ ZQ)(A,) (5123)

We say now something about the generic momentum space structure of such a distribution.
First one has to obtain from the explicit formula for the distributions A in one variable that
in all cases

A (p) ~ 0(po) £i(pD) (5.1.24)

with supp(f;) C {p2 > )»12} for some parameters with mass significance A; > 0,i = 1, 2, 3.
We consider now the Taylor transform of A 123y (&1, &2) and we use the notation K = k; + k»;
the generic structure is

Aok ko) = (ki — (o +23)M)g1 +0(k3 — (A3 + A1) g2 + 0 (K* — (M1 + A2))gs.
(5.1.25)

It follows that if at least two of the masses A; > 0, i = 1, 2, 3 are strictly positive, then
0,0) ¢ supp(A(m) (k1, k»). This observation is useful because for causal distributions with
such support property in momentum space one can use the so-called central formula for causal
decomposition of distributions [23]. If the conditions of validity of the central formula are not
met we will have to use a regularization procedure.

(i1) We investigate the possible Ward identities and obstructions to causal splitting. First
we consider case (b). We illustrate this case on the the distribution

d" = d3 (0" Dy, A) (5.1.26)
where A is arbitrary. The other cases can be treated similarly. First we derive the Ward identity
3, d" = —8(x; — x3)A(xa — x3) + m*DF (x) — x3) A(x — x3). (5.1.27)

Using the formula for the causal splitting (5.1.13) one can see that the preceding identity
is preserved by the operation of distribution splitting.
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Next, we consider case (c). We have to study separately the case when the super-loop
contains at most one Dirac line and the case when we have three Dirac lines. We illustrate the
first case by the distribution

dM = d(123)(8MDm1, sz, Dm3) nm; > O; (5128)
the other cases can be treated similarly. The Ward identity is in this case
Bud“ = —5()62 — )C3)Dm2,m3 ()C3 — xl) + .- (5]29)

where by ... we mean contributions with the order of singularity strictly smaller than zero.
One computes immediately that both sides have the order of singularity equal to unity. If we
have m;+m3 > 0 then we can apply the central decomposition formula and obtain no anomaly.
In the opposite case, we use the standard regularization procedure (5.1.1) of the distributions
appearing in the lists (4.1.9)—(4.1.12) presented at the beginning of this subsection. The
decomposition (5.1.1) induces a similar decomposition for the distributions of the type d;:

diy = dg), +d"® (5.1.30)
where
w(d®) = w(d) o(d™®) = w(d) -2 (5.1.31)
and the support properties of d° in the momentum space are more convenient: (0,0) &
70
supp(d ;).

If we apply this decomposition to the distributions d* and d we obtain two Ward identities,
one for each part. The first one can be split causally without anomalies using the central
decomposition formula. For the second identity we note that both sides have order of singularity
strictly lower than —1 so this relation can be also split causally without anomalies as explained
at the end of section 3. In this way we can obtain a anomaly-free decomposition of the Ward
identity we have started with. One has to check case by case this argument for all the other
types of distribution of type (c) without Dirac loops.

A very important observation is that the preceding argument is not valid for distributions
associated with super-loops containing three Dirac lines. The reason is that one is led
to the computation of some traces. To be more specific the relevant terms from the first
commutator (5.1.9) are

DY (x1, x2; x3) = d!P (1, %25 x3) 2 g (1) Apy (¥2) Ay (x3)

+dbhy (x1, X023 X3) ¢ g (x1) @y (X2) Ay (x3) 1 +(x2 <> x3)

iy, (X1, X235 X3) T g (X1) @ (02) De(x3) :

+dy (X1, X203 X3)q (X1) + - - - (5.1.32)
where by - - - we mean the terms which cannot produce anomalies. Let us note that all these
terms are obtained from Wick contractions of the pieces of the interaction Lagrangian of the
type (2.2.7).

The distributions appearing in this formula are sums of distributions of the type d(23)

because of the traces, but in this case the trace operation can annihilate the most singular term
and instead of (5.1.23) we might have

w(d) <4+Za)(Ai). (5.1.33)

It follows that these distributions must be studied separately and some explicit computation
are required.

(iii) All the distributions appearing in the formula (5.1.32) have eight contributions
corresponding to the decomposition of the three currents involved in (2.2.7) into the vectorial
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and axial components. If we compute the contribution corresponding to three vectorial factors,
then the others can be obtained by simple substitutions. Let us consider this pure vector

contribution to d’,” (x1, x2; x3); the explicit expression is

dhr vy = () as ) st eadyy”sy) ay + (1) as ) e ) cadyy’ sy v, (5.1.34)
where we have defined for arbitrary masses M, M,, M the following fundamental distribution

dysp) o, (e xos x3) = Te { Syl (v — x2)y [ Sy, (62 — x3)y? S} (3 — x1)

=Sy (x2 — x3)y” Sy (3 — x1) "

+81, (2 — x3)y? [Si) (x3 — xD)y " Shp (x1 — x2)

=Sy (x3 — x)yP Sy, (v — x) |y

+S,§2(x3 — xl)yﬂ[sj(\/jz)(xl — xz)y”S,(Jl)(xz — X3)

=Sy (1 — x2)y" Sy (x2 — x3)]y* } (5.1.35)

which is similar to (5.1.21); compare also to formula (5.3.11) from [23]. It also has causal
support: one can obtain quite easily alternative expressions having the structure (5.1.22).
The entire vectorial contribution is now obtained if we add the contributions following

from d’,"\,,,, if we perform the following simple transforms:

g —> 1) h — 1 yH — yhys v — v'ys (5.1.36)

and the two other similar possibilities. Using the formula (4.1.13) we obtain the following
form for the pure vectorial part:

V) )
dlypiry = (t) asW) st eadyy i) vy + (ta) aB (1) Be (W) cady v v,

V) V)
+(1) () pe(t)eady v _ar, + W) as(t) Bty cady v _u,

V) )
+(ta) At Be (t)ead” s ay + W) as () Bety)ead ) v

+t)ap ) s Ceadyy’ . s + EapED st eadyy’ Yy .- (5.137)

One notices that the vectorial part of d".”

W abc
nvp
the type dMl,Mz,M3'

By similar transforms one can obtain the pure axial part. One defines in analogy to (5.1.34)
the distribution dj;” ,tz ) u, by inserting a factor ys:

is expressed only in terms of the distribution of

Ay v (1, x23 x3) = Trys (-} (5.1.38)
where by {- - -} we mean the same parenthesis as in (5.1.35). The pure axial contribution to

d!,” is similar to (5.1.37). The only relevant thing is that it is expressed only in terms of the

new distribution ;7" . It follows therefore that the distribution d”;” can be expressed in

terms of two independent distributions: dj,” LZ?M; and d),” 154/2 1.+ One can prove quite easily

that the orders of singularities are

oy ) = 1. (5.1.39)
Let us note in passing that the asymptotic behaviour of the distribution
o = dapery + dap:a (5.1.40)
is given by
dape ™~ Vabed(yy + Aaved(y) (5.1.41)
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where the axial tensor A, is given by the expression (1.0.1) from the introduction, the vector
tensor is given by a similar expression

Vabe = Tr (631t 121+ 151 121) = foea Tr (517 +1,717) (5.1.42)
and
i =doco . (5.1.43)

A similar investigation can be performed for the other distributions appearing in the
formula (5.1.32). The distribution d’, can be expressed in terms of two independent
distributions: dl’;':(x,])? u, and d%(f,l)z _u,» Which can be obtained from d ,’C;p 1{,1‘:) w, and df,ll:f’ ,{2 ) My
making y” — 1. The order of singularity of these distributions is lower than naive power

counting indicates. They can be written as follows:

3
i, = 3 M G144
i=1
with
w(di;w(v)(A)) —0. (5.1.45)

Analogously, the distribution d'; . can be expressed in terms of two independent

abc
distributions: d¥ '}, ,, and dyy, .. which can be obtained from d’;")) ,, and d};’})

making y* — 1. We also have

n(V)(A)  _
o(dy, ymy) = 1. (5.1.46)
Finally, the distribution d) can be expressed in terms of two independent distributions:
V) n(A) : ; wn(V) n(A) ;
oy, o5 A0 4y, Which can be obtained from dy, -y, 4, and dy, "y, ), by making
Sm, = Zm.m,. We have in this case
V)(A
o(dyy o) = 3. (5.1.47)
T %) %) . .
We also need the distributions d M Mo M and dm; My My My which can be obtained from
d 1;11/1(1‘/13/12 w, and dz(]‘;)l M., Tespectively by making y# — 1. In this case we have a structure

similar to (5.1.44) and a similar result for the order of singularity.

We can easily see that all distributions ") are completely antisymmetric in the Lorentz
indices due to traces involving a ys matrix. It is not difficult to prove that one can impose
a supplementary condition on the causal splitting procedure, namely the preservation of this
symmetry property.

The distributions appearing in the third commutator from (5.1.9) can be obtained from the
preceding ones by making the substitution x; <> x, and this doubles the value of the possible
anomalies originating from the first commutator.

The distributions appearing in the second commutator from (5.1.9) can be obtained from
the preceding ones by more subtle transforms. For case (b) and case (c) without Dirac loops
we have the same list of distributions and there are no anomalies. For case (c) with Dirac loops
we have to consider

fvp PV
dMl,quMz - dMl,M2YM3

v . v . _ i .
d%],Mz,M} (x1, x2; x3) — fA;/LIZ’MLMI (x1, x2; x3) = d%2,M3,M1 (x2, X35 Xx1)
g, Myt X1 X235 X3) = fag ag, ar, (X1, X253 X3) = diy gy py, (X3, X135 X2)

I . " . R .
dm;Ml,Mz,Mg(xl’ X23 X3) - fm;Ml,Mz,Mg(xl’ X23 .X3) = dm;Mz,M3,M1 ()C3, X1; )Cz).

(5.1.48)
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(iv) Now we can give the list of Ward identities verified by these distributions. Using the
Dirac equation for the propagators we obtain

. el vo(V) vp(V)
P Ay vy 1, X23 X3) = (M — M3) o " oy (X1, %23 X3)
1

HE ey — x2) PyY (61 — x3) +i8(x1 — x3) P 4y, (X2 — x3) (5.1.49)

.0 W) W)
e dyy " a1, x23 x3) = (M — M)y ) 4 (61, X2 X3)
3

+8(x; — x3) Py )y (62 — X3) —18(x2 — X3) Py y (X1 — x3) (5.1.50)
I%d%%,m (x1, 221 x3) = (Ma — M3)dy ")y vy (2, X35 x1)

HE(x1 — x2) Py, g, (X1 — x3) +18(x1 — X3) Py, 4y, (X2 — X3) (5.1.51)
i%fn’éfﬂi,%(m, x2;x3) = (M — M1>dX4(1V,§42,M3(Xz, X3: x1)

HE(x) — x3) Py g (2 — x3) — 18 (xa — x3) Py, (X1 — X3) (5.1.52)
.9 )

. _ _ V) .
laxf Ay, oy, (X1, X253 X3) = (Mo — M3)dy oy, (X1, X23 X3)

+i5()€1 — )C3)PM1,M2 ()C2 — X3) + iS(XZ — x3)PM1’M3 (X1 — X3) (5153)

C 0w )
laxi‘ dirt w15 X25 X3) = (Mg — M3)d, .y 040 (X1, X23 X3)
HE(x1 — x3) Py, v, (X2 — Xx3) +18 (X2 — x3) Py pay v (X1 — X3). (5.1.54)

The Ward identities for the axial distributions present a notable difference. Because of
the trace operation, the delta terms disappear. Using also formula (4.1.13) we obtain

i%d%%ﬁw/} (x1, x2; x3) = (M2 + M3)fAV4[:ff4)2_M3 (x1, X2; Xx3) (5.1.55)
i%dﬂi%frm (x1, x25 x3) = (M + M2)d1tflp]<,/;4)2,M3 (x1, X2; X3) (5.1.56)
i%dﬁfﬁz,m (x1, 221 x3) = (Ma + M3)dy ™y, ) (2, X33 x1) (5.1.57)
i%fﬁfﬁ;% (o1, x2523) = (M + MZ)d/ll)/l(f;/lz,M3(x2’ X33 X1) (5.1.58)
iidu(m (x1, x2; x3) =0 (5.1.59)

8xii M, M, M3

)

1M—Mdnﬁfg‘}hM2,M3 (x1, x2; x3) = 0. (5.1.60)
1

The causal splitting of these two types of Ward identity is sensibly different. Let us first
consider only the first six equations (the vectorial Ward identities). Because of the delta terms
in the right-hand sides, we have the same order of singularity for both sides in all vectorial
Ward identities; if the conditions of application of the central splitting formula are met we
obtain no anomalies. If some of the masses are null, one has to use a regularization procedure
as for case (b). More precisely one can prove that the decomposition (5.1.1) induces a similar
decomposition for the distributions of the type d123):

dii23) = d{\p3) + d(153, (5.1.61)
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where

w(d?m)) = w(di3)) w(d(r;:%)) =w(dis) —4 (5.1.62)
and the support properties of d?m) in the momentum space are more convenient: (0,0) ¢
supp(d(,3))-

We turn now to the last six equations (the axial Ward identities). The previous argument is
still valid for the last two of them. We consider some generic anomalies P, P; obtained after
the causal splitting of the identities (5.1.57) and (5.1.58). If we differentiate the corresponding
equations with respect to x; and x| respectively, we obtain from antisymmetry the consistency
equations

0 0
P’ =0
0xy 0xy
and this leads to P/ =0,i =1, 3.
The Ward identities (5.1.55) and (5.1.56) can produce anomalies of the type
2

Py =0 (5.1.63)

P"(X) = const x &"°*f 8(X) (5.1.64)

8x?8x§
for some positive constant const. The explicit expression of this constant can be computed
as in [23] section 5.3. One cannot eliminate such a type of anomaly from both equations by
redefinition. The resulting anomaly is then

2
A(X) = const x Agp.e"P 58(X) g (x) Apy(x2) Acp(x3) 1 (5.1.65)
0x$ 0x5
where
Aave = 27Tr (615, 11} + 1a{tp, 11} + 1{1p, 1} + ta{1), 1.}). (5.1.66)

Performing some redefinitions of the expressions Aj'(X) (‘integration by parts’) we can
reexpress this axial anomaly in the following form:

Aappr(X) = const X Aupe€unpod(X) : ug(x1) " (x1) FP7 (x3) (5.1.67)
and we can also show that the tensor depending only on the group indices A,y is in fact given
by the formula (1.0.1) from the introduction. The anomaly A 455, is a cocycle

doAapp; =0 (5.1.68)

but it is not a coboundary, so disappears iff we have the condition A,,. = 0 1i.e. the well known
condition (5.1.6) from the statement.

(v) We still have to investigate the possible anomalies originating from the delta terms,
i.e. from distributions associated with graphs of type (a). We present here briefly the analysis
of these terms. One can compute the commutators and select the terms which will lead, in
principle, to an anomaly. We obtain

a
[Tlll(x)’ L(y)] = fabcfdcffdghKDm( ()C - )’) : ua(x)Abv(x)Afk(y)A;(y)A;:(y) :
n
0
_zfahcfd/ecfd/ghKDm( (x = ) 1 g (X) Ay (X) AL (V) P () Py (¥) -
"
ad
+2fz;bcfz;bffz;’ghgl)m;(x =) P (uc(x)A s, (V) A, (NP () :
“w

! / a
4 fabe8breng,— Dy = ¥) + Pa(N)utc ()P ()P () Pn(y) 1 -+
"

(5.1.69)
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By - - - we mean the rest of the commutator which cannot produce anomalies. Now, as
in [16] and [17] we obtain from this commutator a possible anomaly:

A(x1, X2, x3) = S(X)[A1(x1) + Ay (x)) + As(x)) + Ag(x1)] (5.1.70)
where
AV (X) = i fave Facr Fagh = 1ta(X) Apy(X) A 3. (X) AL (x) Aj (x) : (5.1.71)
Ag(x) = =2i fave fjee Sign * Ua(X) Ay (1) Aj (X) D (X) Py (x) : (5.1.72)
A3() = 20 f0pe fins Fign * Pa(O)ute(x) A 5y (X) AJ () D (x) : (5.1.73)
Ay(x) = i[fa,bcgl;fgh + f_)/"bcgl/mgh + g/bcg;;afh + ff;bcgl/mfg] :

XPq (X (x) P p(y)Pg(x)Pp(x) = . (5.1.74)

The results are:

e In [11] itis proved that A} = 0 due to the Jacobi identity.
e One can also show, using the identity (2.1.19), that A, + A3 = 0.
o If we try to write the anomaly A4 as a coboundary dy L(x) we should take

L(xX) = &oeen + Pa()Pe(X) P p(x) P (x)Dp(x) (5.1.75)
which is forbidden by the assumption that (3.1.10) is fulfilled.

So we obtain the second restriction from the statement. O

Remark 5.2. Recently [19] a new method was proposed to solve problems of consistency
such as those appearing in our paper. Instead of imposing a factorization condition of the
type (2.1.10) (or its ‘infinitesimal’ version (2.1.11)) one imposes a quantum analogue of the
Noether conservation law of a certain current. Presumably, this starting points are equivalent
and they should lead to the same sets of consistency conditions. This point deserves further
investigation. However, one should compare carefully the relation (4.2.8) expressing the
conservation law of the BRST current (and equivalent to the formal adiabatic limit condition)
to the relation (4.5) of [19] expression the quantum Noether postulate.

5.2. The standard model
We recall the notations from [17]. The Lie algebra is in this case su(2) x u (1) and the standard
basis X,,a = 0, 1, 2, 3, has the usual commutation relations
[X4, Xp] = €ape X a,b=1,2,3 [Xo, X,1=0 a=1,2,3. 521
In the new basis Y,, a =0, 1, 2, 3, defined by
Y,=¢gX, a=1,2 Y; = —g cos@ X3+ g sin X

a 8 Aa . / 3 8 3t8 0 (522)

Yo=—g sinf X3 — g’ cos 6Xp

(here the angle 0, determined by the condition cos 8 > 0 is the Weinberg angle and the
constants g and g’ are real with g > 0) the structure constants are

Sa10=g sin 0 Sf321 =g cos 0 S310=0 fio=0 (5.2.3)
and the rest of the constants are determined by antisymmetry. The choice of the masses is
mo =0 mg #0 a=1,2,3 (5.2.4)

(the particles created by A{ being the photons and the particles created by A4, a = 1,2, 3,
the heavy bosons).
In [17] we found the following result.
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Theorem 5.3. In the SM, the following relations are true:
(a) The masses of the heavy bosons are constrained by

m; = my = ms3cos 0. (5.2.5)

(b) The constants f,,. are completely determined by the antisymmetry property (2.1.17)
and

€8

€8 / / .
Jou = fon = > Josz = Yeos 0 fr10 =28 sin 0 526
[ — 8 . cos 20 e
321 = 3127 5 123 = 8 2 cos 0

the rest of them being zero. Here € can take the values + or —.
(c) The constants f), . are (partially) determined by
" 1" " " " " 1"
Jave =0 (a,b,c=1,2,3) 001 = Joo2 = Joos = Jorz = Joz = Joa1 =0

€g )
Joui = fom = for = Tml(mg) .

Moreover, one can fix € = +.

(5.2.7)

Remark 5.4. In [24] a dual point of view is followed: one gives the masses of the heavy
bosons m| = m, # m3 and determines that the gauge algebra must be su(2) x u(1).

We consider the minimal SM containing only one generation of Dirac particles. In this
case one takes in the generic formalism from the preceding section N = 2 and

ME<O 0). (5.2.8)

0 me

The components v, (1) correspond to the electron (the electronic neutrino) and m. is
the electron mass. Remark that the neutrino mass is considered null.
The choice for the representations = is the following one:

tf = 1goy t7 = 1(— gcos 0oz +g'sin O1)
+ _ 1 +_ 1 . ’ (5.2.9)
13 =380, ty = —3(gsin Oo3 + g’ cos 61)
and
tf=t=0 =1y sin 0 5 = —y cos 6 (5.2.10)

where o; are the Pauli matrices. The representation property (4.1.5) is fulfilled for any matrix
y. However, we have the following elementary result.

Proposition 5.5. The interaction between the Dirac field of the electron v, and the
electromagnetic field Ajy has the usual form

ey Al

(here e is the electron charge) iff

=_° T (5.2.11)
&= Gin 6 &= s 0 -
and
1
y = Eg/(l —03) = 5 gM. (5.2.12)
Mme

Next, we have:
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Proposition 5.6. The expressions for the matrices s} are
gt Me (00 gt = 1me (00
O 2my \O 1 P om W10

+ me 0 O + ime O O
S = —— S, = ——
2 2m; \1 0 3T 2m \0 1)°

Proof. One uses the relations (2.2.18) for a = 1, 2, 3 and obtains the expressions for s,
a =1, 2, 3. Next, we use the relation (4.1.6), more precisely

st — st =it a=1,2,3. (5.2.14)

(5.2.13)

This equation gives immediately the expression for sg. ]

The expression of the Higgs potential is obtained as in [4, 13]. One can check that in this
way the usual SM is obtained.

5.3. Regularization and anomalies

We have succeeded in giving a complete analysis of the possible anomalies appearing in the SM
up to the third order of the perturbation theory. One would want to generalize this analysis to all
orders of the perturbation theory. It is possible that one can use the same type of combinatorial
argument, namely one considers possible distributions appearing in the commutators D (X) of
order n and observes that only the super-loop graphs with Dirac lines can produce anomalies.
Then it is quite possible that in higher orders the orders of singularity are sufficiently lower to
make possible a causal splitting of the Ward identities without anomalies. This seems to be
indicated by the traditional argument from the literature [1,2,25].
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